You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ML-For-Beginners/5-Clustering/translations/README.ru.md

27 lines
4.4 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

# Модели кластеризации для машинного обучения
Кластеризация - это задача машинного обучения, в которой происходит поиск похожих друг на друга объектов и объединение их в группы, называемые кластерами. Что отличает кластеризацию от других подходов в машинном обучении, так это то, что все происходит автоматически, и справедливо будет сказать, что это противоположность обучению с учителем.
## Региональная тема: модели кластеризации для музыкальных вкусов нигерийской публики 🎧
Разнообразная публика Нигерии имеет самые разные музыкальные вкусы. Используя данные, полученные от Spotify (на основе [этой статьи](https://towardsdatascience.com/country-wise-visual-analysis-of-music-taste-using-spotify-api-seaborn-in-python-77f5b749b421), давайте посмотрим на популярную музыку в Нигерии. Этот набор данных включает данные о "танцевальности", "акустичности", громкости, "разговорчивости", популярности и энергии различных песен. Будет интересно обнаружить закономерности в этих данных!
![Диджейский пульт](../images/turntable.jpg)
> Фото <a href="https://unsplash.com/@marcelalaskoski?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Марсела Ласкоски</a> на <a href="https://unsplash.com/s/photos/nigerian-music?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Unsplash</a>
В этой серии уроков вы откроете для себя новые способы анализа данных с помощью методов кластеризации. Кластеризация особенно полезна, когда в наборе данных отсутствуют метки. Если в нем есть метки, тогда могут быть более полезными методы классификации, подобные тем, которые вы изучили на предыдущих уроках. Но в случаях, когда вы хотите сгруппировать данные без меток, кластеризация - отличный способ обнаружить закономерности.
> Существуют инструменты, не требующие написания большого количества кода, которые могут помочь вам узнать о моделях кластеризации. Попробуйте [Azure ML для этой задачи](https://docs.microsoft.com/learn/modules/create-clustering-model-azure-machine-learning-designer/?WT.mc_id=academic-15963-cxa).
## Уроки
1. [Введение в кластеризацию](../1-Visualize/README.md)
2. [Метод K-средних](../2-K-Means/README.md)
## Благодарности
Эти уроки были написаны [Джен Лупер](https://www.twitter.com/jenlooper) с 🎶 и полезными комментариями от [Ришит Дагли](https://rishit_dagli) и [Мухаммад Сакиб Хан Инан](https://twitter.com/Sakibinan).
Набор данных [Нигерийские песни](https://www.kaggle.com/sootersaalu/nigerian-songs-spotify) был получен из Kaggle как спаршенный со Spotify.
Полезные примеры K-средних, которые помогли в создании этого урока, включают [исследование цветков ирисов](https://www.kaggle.com/bburns/iris-exploration-pca-k-means-and-gmm-clustering), [вводный блокнот](https://www.kaggle.com/prashant111/k-means-clustering-with-python) и [пример гипотетической НПО](https://www.kaggle.com/ankandash/pca-k-means-clustering-hierarchical-clustering).