You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ML-For-Beginners/5-Clustering/translations/README.ru.md

26 lines
4.4 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

# Модели кластеризации для машинного обучения
Кластеризация - это задача машинного обучения, при которой она ищет объекты, которые похожи друг на друга, и группирует их в группы, называемые кластерами. Что отличает кластеризацию от других подходов в машинном обучении, так это то, что все происходит автоматически, и справедливо сказать, что это противоположность supervised learning.
## Региональная тема: модели кластеризации для музыкальных вкусов нигерийской публики 🎧
У разнообразной публики Нигерии самые разные музыкальные вкусы. Использование данных, извлеченных из Spotify (на основе [этой статьи](https://towardsdatascience.com/country-wise-visual-analysis-of-music-taste-using-spotify-api-seaborn-in-python-77f5b749b421), давайте посмотрим на музыку, популярную в Нигерии. Этот набор данных включает данные о различных песнях "танцевальность", "акустичность", "громкость", "речевость", "популярность" и "энергия". Будет интересно обнаружить закономерности в этих данных!
![Поворотный стол](./images/turntable.jpg)
Фото <a href="https://unsplash.com/@marcelalaskoski?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText"> Марсела Ласкоски </a> на <a href="https://unsplash.com/s/photos/nigerian-music?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText"> Unsplash </a>
В этой серии уроков вы откроете для себя новые способы анализа данных с помощью методов кластеризации. Кластеризация особенно полезна, когда в наборе данных отсутствуют метки. Если на нем есть ярлыки, тогда могут быть более полезными методы классификации, подобные тем, которые вы изучили на предыдущих уроках. Но в случаях, когда вы хотите сгруппировать немаркированные данные, кластеризация - отличный способ обнаружить закономерности.
> Существуют полезные инструменты с небольшим количеством кода, которые могут помочь вам узнать о работе с моделями кластеризации. Попробуйте [Azure ML для этой задачи](https://docs.microsoft.com/learn/modules/create-clustering-model-azure-machine-learning-designer/?WT.mc_id=academic-15963-cxa)
## Уроки
1. [Введение в кластеризацию](1-Visualize/README.md)
2. [Кластеризация K-Means](2-K-Means/README.md)
## Благодарности
Эти уроки были написаны с помощью 🎶 [Джен Лупер](https://www.twitter.com/jenlooper) с полезными отзывами [Ришит Дагли](https://rishit_dagli) и [Мухаммад Сакиб Хан Инан](https://twitter.com/Sakibinan).
Набор данных [Нигерийские песни](https://www.kaggle.com/sootersaalu/nigerian-songs-spotify) был получен из Kaggle, как и из Spotify.
Полезные примеры K-Means, которые помогли в создании этого урока, включают [исследование радужной оболочки глаза](https://www.kaggle.com/bburns/iris-exploration-pca-k-means-and-gmm-clustering), [вводный блокнот](https://www.kaggle.com/prashant111/k-means-clustering-with-python) и [пример гипотетической НПО](https://www.kaggle.com/ankandash/pca-k-means-clustering-hierarchical-clustering).