17 KiB
菜品分类器1
本节课程将使用你在上一个课程中所保存的全部经过均衡和清洗的菜品数据。
你将使用这份数据集,并通过多种分类器 在给出了各种配料后预测这是那一个国家的菜品。在此过程中,你将学到更多能够用来调试分类任务算法的方法。
课前测试
准备工作
假设你已经完成了课程1, 确保在根目录的/data
文件夹中有 cleaned_cuisines.csv 这份文件来进行接下来的四节课程。
练习 - 预测某国的菜品
-
在本节课的 notebook.ipynb 文件中,导入Pandas,并读取相应的数据文件:
import pandas as pd cuisines_df = pd.read_csv("../../data/cleaned_cuisine.csv") cuisines_df.head()
数据如下所示:
| | Unnamed: 0 | cuisine | almond | angelica | anise | anise_seed | apple | apple_brandy | apricot | armagnac | ... | whiskey | white_bread | white_wine | whole_grain_wheat_flour | wine | wood | yam | yeast | yogurt | zucchini | | --- | ---------- | ------- | ------ | -------- | ----- | ---------- | ----- | ------------ | ------- | -------- | --- | ------- | ----------- | ---------- | ----------------------- | ---- | ---- | --- | ----- | ------ | -------- | | 0 | 0 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 1 | 1 | indian | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 2 | 2 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 3 | 3 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 4 | 4 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
-
现在,再多导入一些库:
from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split, cross_val_score from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report, precision_recall_curve from sklearn.svm import SVC import numpy as np
-
接下来需要将数据分为训练模型所需的X(译者注:代表特征数据)和y(译者注:代表标签数据)两个dataframe。首先可将
cuisine
列的数据单独保存为的一个dataframe作为标签(label)。cuisines_label_df = cuisines_df['cuisine'] cuisines_label_df.head()
输出如下:
0 indian 1 indian 2 indian 3 indian 4 indian Name: cuisine, dtype: object
-
调用
drop()
函数将Unnamed: 0
和cuisine
列删除,并将余下的数据作为可以用于训练的特证(feature)数据:cuisines_feature_df = cuisines_df.drop(['Unnamed: 0', 'cuisine'], axis=1) cuisines_feature_df.head()
你的特证(feature)数据看上去将会是这样:
almond angelica anise anise_seed apple apple_brandy apricot armagnac artemisia artichoke ... whiskey white_bread white_wine whole_grain_wheat_flour wine wood yam yeast yogurt zucchini 0 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 1 0
现在,你已经准备好可以开始训练你的模型了!
选则你的分类器
你的数据已经清洗干净并已经准备好可以进行训练了,现在需要决定你想要使用的算法来完成这项任务。
Scikit_learn将分类任务归在了监督学习类别中,在这个类别中你将可以找到很多可以用来分类的方法。乍一看上去,有点琳琅满目。以下这些方法都包含了分类技术:
- 线性模型(Linear Models)
- 支持向量机(Support Vector Machines)
- 随机梯度下降(Stochastic Gradient Descent)
- 最近邻(Nearest Neighbors)
- 高斯过程(Gaussian Processes)
- 决策树(Decision Trees)
- 集成方法(投票分类器)(Ensemble methods(voting classifier))
- 多类别多输出算法(多类别多标签分类,多类别多输出分类)(Multiclass and multioutput algorithms (multiclass and multilabel classification, multiclass-multioutput classification))
你也可以使用神经网络来分类数据, 但这对于本课程来说有点超纲了。
如何选择分类器?
那么,你应该选择哪一个分类器呢?一般来说,可以多选择几个并对比他们运行后的结果。Scikit-learn提供了各种算法(包括KNeighbors、 SVC two ways、 GaussianProcessClassifier、 DecisionTreeClassifier、 RandomForestClassifier、 MLPClassifier、 AdaBoostClassifier、 GaussianNB以及QuadraticDiscrinationAnalysis)的效果对比,并且将比较的结果进行了可视化的展示:
图表来源于Scikit-learn的官方文档
AutoML通过在云端运行这些对比非常完美地解决的选择算法的这个问题,使得你能够根据你的数据特性选择最佳的算法。试试点击这里了解更多。
一种更好的方法来选择分类器
不过,比起无脑地猜测,你可以下载这份机器学习作弊表(cheatsheet),对各算法进行对比,这是一个选择算法更有效的办法。在表中我们可以发现对于本课程中涉及的多类型的分类任务,可以有以下这些选择:
微软算法作弊表中关于多类型分类任务可选算法的部分
✅ 下载这份作弊表,打印出来,挂在你的墙上吧!
选择的过程
让我们看看根据我们所有的限制条件依次判断下各种方法的可行性:
- 神经网络(Neural Network)太过复杂了。我们的数据很清晰但数据量比较小,此外我们是通过notebook在本地进行训练,神经网络对于这个任务来说过于复杂了。
- 二分类法(two-class classifier)不可行。我们不能使用二分类法,所以这就排除了一对多(one-vs-all)算法。
- 决策树以及逻辑回归可行。决策树应该是有用的,此外也可以使用逻辑回归来处理多类型数据。
- 多类型增强决策树是用于解决其他问题的. 多类型增强决策树最适合非参数化的任务,即任务目标是建立一个排序,这对我们当前的任务并没有作用。
使用Scikit-learn
我们将会使用Scikit-learn来对我们的数据进行分析。然而,在Scikit-learn中使用逻辑回归也有很很多方法。可以看一看逻辑回归算法需要传递的参数。
当我们需要Scikit-learn进行逻辑回归运算时,multi_class
以及 solver
是最重要的两个参数,因此我们需要特别说明一下。 multi_class
的值是分类任务要求的某一种特定的行为。solver
的值是我们需要使用的算法。并不是所有的solvers都可以匹配multi_class
的值的。
根据文档,在多类型问题中,训练的算法应:
- 使用“一对其余”(OvR)策略(scheme), 当
multi_class
被设置为ovr
时 - 使用交叉熵损失(cross entropy loss), 当
multi_class
被设置为multinomial
(目前,multinomial
只支持‘lbfgs’, ‘sag’, ‘saga’以及‘newton-cg’等 solver)时。
🎓 其中“scheme”可以是“ovr(one-vs-rest)”也可以是“multinomial”。 因为逻辑回归本来是设计来用于进行二分类任务的,这两个scheme都可以使得逻辑回归能更好的支持多类型分类任务。来源
🎓 “solver”被定义为是"用于解决优化问题的算法"。来源.
Scikit-learn提供了以下这个表格来解释solver是如何应对的不同的数据结构所带来的不同的挑战的:
练习 - 分割数据
你刚刚在上一节课中学习了逻辑回归,因此我们可以聚焦于此,来演练一下如何进行第一个模型的训练。首先,需要通过调用train_test_split()
可以把你的数据分割成训练集和测试集:
X_train, X_test, y_train, y_test = train_test_split(cuisines_feature_df, cuisines_label_df, test_size=0.3)
练习 - 应用逻辑回归
接着,你需要决定选用什么 scheme 以及 solver 来进行我们这个多类型分类的案例。这里我们使用LogisticRegression方法,并设置相应的multi_class参数,同时将solver设置为liblinear来进行模型训练。
-
创建逻辑回归,并将multi_class设置为
ovr
,同时将solver设置为liblinear
:lr = LogisticRegression(multi_class='ovr',solver='liblinear') model = lr.fit(X_train, np.ravel(y_train)) accuracy = model.score(X_test, y_test) print ("Accuracy is {}".format(accuracy))
✅ 也可以试试其他solver比如
lbfgs
, 这通常是默认的设置注意, 使用Pandas的
ravel
函数可以在需要的时候将你的数据进行降维计算结果准确率高达了80%!
-
你也可以通过查看某一行数据(比如第50行)来观察到模型运行的情况:
print(f'ingredients: {X_test.iloc[50][X_test.iloc[50]!=0].keys()}') print(f'cuisine: {y_test.iloc[50]}')
运行后的输出如下:
ingredients: Index(['cilantro', 'onion', 'pea', 'potato', 'tomato', 'vegetable_oil'], dtype='object') cuisine: indian
✅ 试试不同的行索引来检查一下结果吧
-
让我们再深入研究一下,你可以检查一下本次预测的准确率:
test= X_test.iloc[50].values.reshape(-1, 1).T proba = model.predict_proba(test) classes = model.classes_ resultdf = pd.DataFrame(data=proba, columns=classes) topPrediction = resultdf.T.sort_values(by=[0], ascending = [False]) topPrediction.head()
运行后的输出如下———可以发现这是一道印度菜的可能性最大,是最合理的猜测:
0 indian 0.715851 chinese 0.229475 japanese 0.029763 korean 0.017277 thai 0.007634 ✅ 你能解释下为什么模型会如此确定这是一道印度菜么?
-
就和你在回归的课程中所做的一样,通过输出分类的报告,我们可以得到更多的细节:
y_pred = model.predict(X_test) print(classification_report(y_test,y_pred))
precision recall f1-score support chinese 0.73 0.71 0.72 229 indian 0.91 0.93 0.92 254 japanese 0.70 0.75 0.72 220 korean 0.86 0.76 0.81 242 thai 0.79 0.85 0.82 254 accuracy 0.80 1199 macro avg 0.80 0.80 0.80 1199 weighted avg 0.80 0.80 0.80 1199
挑战
在本课程中,你使用了清洗后的数据建立了一个机器学习的模型,能够根据一系列的配料来预测菜品来自于哪个国家。请再花点时间阅读一下Scikit-learn所提供的可以用来分类数据的其他选择。同时也可以深入研究一下“solver”的概念并尝试一下理解其背后的原理。
课后小测
回顾与自学
这个课程将对逻辑回归背后的数学原理进行更加深入的讲解