You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ML-For-Beginners/translations/th/README.md

36 KiB

GitHub license
GitHub contributors
GitHub issues
GitHub pull-requests
PRs Welcome

GitHub watchers
GitHub forks
GitHub stars

🌐 การสนับสนุนหลายภาษา

รองรับผ่าน GitHub Action (อัตโนมัติและอัปเดตเสมอ)

French | Spanish | German | Russian | Arabic | Persian (Farsi) | Urdu | Chinese (Simplified) | Chinese (Traditional, Macau) | Chinese (Traditional, Hong Kong) | Chinese (Traditional, Taiwan) | Japanese | Korean | Hindi | Bengali | Marathi | Nepali | Punjabi (Gurmukhi) | Portuguese (Portugal) | Portuguese (Brazil) | Italian | Polish | Turkish | Greek | Thai | Swedish | Danish | Norwegian | Finnish | Dutch | Hebrew | Vietnamese | Indonesian | Malay | Tagalog (Filipino) | Swahili | Hungarian | Czech | Slovak | Romanian | Bulgarian | Serbian (Cyrillic) | Croatian | Slovenian | Ukrainian | Burmese (Myanmar)

เข้าร่วมชุมชน

Azure AI Discord

การเรียนรู้เครื่องสำหรับผู้เริ่มต้น - หลักสูตร

🌍 เดินทางรอบโลกในขณะที่เราเรียนรู้การเรียนรู้เครื่องผ่านวัฒนธรรมโลก 🌍

ทีม Cloud Advocates จาก Microsoft ยินดีนำเสนอหลักสูตร 12 สัปดาห์ 26 บทเรียนเกี่ยวกับ การเรียนรู้เครื่อง ในหลักสูตรนี้ คุณจะได้เรียนรู้เกี่ยวกับสิ่งที่บางครั้งเรียกว่า การเรียนรู้เครื่องแบบคลาสสิก โดยใช้ Scikit-learn เป็นไลบรารีหลักและหลีกเลี่ยงการเรียนรู้เชิงลึก ซึ่งครอบคลุมใน หลักสูตร AI สำหรับผู้เริ่มต้น นอกจากนี้ยังสามารถจับคู่บทเรียนเหล่านี้กับ หลักสูตรวิทยาศาสตร์ข้อมูลสำหรับผู้เริ่มต้น ได้อีกด้วย!

เดินทางไปกับเราทั่วโลกในขณะที่เรานำเทคนิคแบบคลาสสิกเหล่านี้ไปใช้กับข้อมูลจากหลายพื้นที่ทั่วโลก แต่ละบทเรียนประกอบด้วยแบบทดสอบก่อนและหลังบทเรียน คำแนะนำที่เขียนไว้สำหรับการทำบทเรียน โซลูชัน งานมอบหมาย และอื่นๆ วิธีการเรียนรู้แบบโครงการช่วยให้คุณเรียนรู้ในขณะที่สร้าง ซึ่งเป็นวิธีที่พิสูจน์แล้วว่าทักษะใหม่จะคงอยู่

✍️ ขอขอบคุณผู้เขียนของเรา Jen Looper, Stephen Howell, Francesca Lazzeri, Tomomi Imura, Cassie Breviu, Dmitry Soshnikov, Chris Noring, Anirban Mukherjee, Ornella Altunyan, Ruth Yakubu และ Amy Boyd

🎨 ขอบคุณนักวาดภาพประกอบของเรา Tomomi Imura, Dasani Madipalli และ Jen Looper

🙏 ขอบคุณพิเศษ 🙏 สำหรับ Microsoft Student Ambassador ผู้เขียน ผู้ตรวจสอบ และผู้สนับสนุนเนื้อหา โดยเฉพาะ Rishit Dagli, Muhammad Sakib Khan Inan, Rohan Raj, Alexandru Petrescu, Abhishek Jaiswal, Nawrin Tabassum, Ioan Samuila และ Snigdha Agarwal

🤩 ขอบคุณเพิ่มเติมสำหรับ Microsoft Student Ambassadors Eric Wanjau, Jasleen Sondhi และ Vidushi Gupta สำหรับบทเรียน R ของเรา!

เริ่มต้นใช้งาน

ทำตามขั้นตอนเหล่านี้:

  1. Fork Repository: คลิกที่ปุ่ม "Fork" ที่มุมขวาบนของหน้านี้
  2. Clone Repository: git clone https://github.com/microsoft/ML-For-Beginners.git

ค้นหาทรัพยากรเพิ่มเติมสำหรับหลักสูตรนี้ในคอลเลกชัน Microsoft Learn ของเรา

นักเรียน เพื่อใช้หลักสูตรนี้ ให้ fork repo ทั้งหมดไปยังบัญชี GitHub ของคุณเองและทำแบบฝึกหัดด้วยตัวเองหรือกับกลุ่ม:

  • เริ่มต้นด้วยแบบทดสอบก่อนการบรรยาย
  • อ่านบทเรียนและทำกิจกรรม หยุดและสะท้อนที่แต่ละจุดตรวจสอบความรู้
  • พยายามสร้างโครงการโดยทำความเข้าใจบทเรียนแทนที่จะรันโค้ดโซลูชัน อย่างไรก็ตาม โค้ดนั้นมีอยู่ในโฟลเดอร์ /solution ในแต่ละบทเรียนที่เน้นโครงการ
  • ทำแบบทดสอบหลังการบรรยาย
  • ทำความท้าทายให้เสร็จ
  • ทำงานมอบหมายให้เสร็จ
  • หลังจากทำกลุ่มบทเรียนเสร็จแล้ว ไปที่ กระดานสนทนา และ "เรียนรู้แบบเปิดเผย" โดยกรอก PAT rubric ที่เหมาะสม PAT คือเครื่องมือประเมินความก้าวหน้าที่เป็น rubric ที่คุณกรอกเพื่อพัฒนาการเรียนรู้ของคุณ คุณยังสามารถตอบสนองต่อ PAT อื่นๆ เพื่อให้เราเรียนรู้ร่วมกัน

สำหรับการศึกษาเพิ่มเติม เราแนะนำให้ติดตาม Microsoft Learn โมดูลและเส้นทางการเรียนรู้

ครู เราได้ รวมคำแนะนำบางส่วน เกี่ยวกับวิธีการใช้หลักสูตรนี้


วิดีโอแนะนำ

บทเรียนบางส่วนมีวิดีโอสั้น คุณสามารถค้นหาวิดีโอเหล่านี้ในบทเรียน หรือใน เพลย์ลิสต์ ML สำหรับผู้เริ่มต้นในช่อง YouTube ของ Microsoft Developer โดยคลิกที่ภาพด้านล่าง

ML for beginners banner


พบกับทีมงาน

Promo video

Gif โดย Mohit Jaisal

🎥 คลิกที่ภาพด้านบนเพื่อดูวิดีโอเกี่ยวกับโครงการและผู้ที่สร้างมันขึ้นมา!


วิธีการสอน

เราเลือกใช้หลักการสอนสองข้อในการสร้างหลักสูตรนี้: การทำให้เป็น โครงการที่ลงมือทำ และการรวม แบบทดสอบบ่อยครั้ง นอกจากนี้ หลักสูตรนี้ยังมี ธีมร่วม เพื่อให้มีความสอดคล้องกัน

โดยการทำให้เนื้อหาสอดคล้องกับโครงการ กระบวนการจะมีความน่าสนใจมากขึ้นสำหรับนักเรียนและช่วยเพิ่มการจดจำแนวคิด นอกจากนี้ แบบทดสอบที่มีความเสี่ยงต่ำก่อนชั้นเรียนจะตั้งเจตนาของนักเรียนในการเรียนรู้หัวข้อ ในขณะที่แบบทดสอบที่สองหลังชั้นเรียนจะช่วยเพิ่มการจดจำเพิ่มเติม หลักสูตรนี้ได้รับการออกแบบให้มีความยืดหยุ่นและสนุกสนาน และสามารถเรียนได้ทั้งหมดหรือบางส่วน โครงการเริ่มต้นเล็กและมีความซับซ้อนมากขึ้นเมื่อสิ้นสุดรอบ 12 สัปดาห์ หลักสูตรนี้ยังมีบทส่งท้ายเกี่ยวกับการประยุกต์ใช้ ML ในโลกจริง ซึ่งสามารถใช้เป็นเครดิตพิเศษหรือเป็นพื้นฐานสำหรับการอภิปราย

ค้นหา Code of Conduct, Contributing, และ Translation แนวทาง เราขอต้อนรับความคิดเห็นที่สร้างสรรค์ของคุณ!

แต่ละบทเรียนประกอบด้วย

หมายเหตุเกี่ยวกับภาษา: บทเรียนเหล่านี้เขียนขึ้นใน Python เป็นหลัก แต่หลายบทเรียนก็มีใน R เช่นกัน หากต้องการทำบทเรียน R ให้ไปที่โฟลเดอร์ /solution และมองหาบทเรียน R ซึ่งมีนามสกุล .rmd ที่แสดงถึงไฟล์ R Markdown ซึ่งสามารถกำหนดได้ง่ายๆ ว่าเป็นการฝัง code chunks (ของ R หรือภาษาอื่นๆ) และ YAML header (ที่แนะนำวิธีการจัดรูปแบบผลลัพธ์ เช่น PDF) ในเอกสาร Markdown ด้วยเหตุนี้จึงเป็นกรอบการเขียนที่ยอดเยี่ยมสำหรับวิทยาศาสตร์ข้อมูล เนื่องจากช่วยให้คุณรวมโค้ด ผลลัพธ์ และความคิดของคุณโดยเขียนลงใน Markdown นอกจากนี้ เอกสาร R Markdown สามารถแสดงผลในรูปแบบผลลัพธ์ เช่น PDF, HTML หรือ Word

หมายเหตุเกี่ยวกับแบบทดสอบ: แบบทดสอบทั้งหมดอยู่ใน โฟลเดอร์ Quiz App รวมทั้งหมด 52 แบบทดสอบ แต่ละแบบมีสามคำถาม แบบทดสอบเหล่านี้เชื่อมโยงจากในบทเรียน แต่แอปแบบทดสอบสามารถรันได้ในเครื่อง ให้ทำตามคำแนะนำในโฟลเดอร์ quiz-app เพื่อโฮสต์ในเครื่องหรือปรับใช้ใน Azure

หมายเลขบทเรียน หัวข้อ การจัดกลุ่มบทเรียน วัตถุประสงค์การเรียนรู้ บทเรียนที่เชื่อมโยง ผู้เขียน
01 บทนำสู่การเรียนรู้เครื่อง บทนำ เรียนรู้แนวคิดพื้นฐานเกี่ยวกับการเรียนรู้เครื่อง บทเรียน Muhammad
02 ประวัติศาสตร์ของการเรียนรู้เครื่อง บทนำ เรียนรู้ประวัติศาสตร์ที่อยู่เบื้องหลังสาขานี้ บทเรียน Jen และ Amy
03 ความยุติธรรมและการเรียนรู้เครื่อง บทนำ ประเด็นปรัชญาที่สำคัญเกี่ยวกับความยุติธรรมที่นักเรียนควรพิจารณาเมื่อสร้างและใช้โมเดล ML คืออะไร? บทเรียน Tomomi
04 เทคนิคสำหรับการเรียนรู้ของเครื่อง Introduction นักวิจัย ML ใช้เทคนิคอะไรในการสร้างโมเดล ML? Lesson Chris และ Jen
05 บทนำสู่การถดถอย Regression เริ่มต้นใช้งาน Python และ Scikit-learn สำหรับโมเดลการถดถอย PythonR Jen • Eric Wanjau
06 ราคาฟักทองในอเมริกาเหนือ 🎃 Regression การแสดงผลและการทำความสะอาดข้อมูลเพื่อเตรียมพร้อมสำหรับ ML PythonR Jen • Eric Wanjau
07 ราคาฟักทองในอเมริกาเหนือ 🎃 Regression สร้างโมเดลการถดถอยเชิงเส้นและพหุนาม PythonR Jen และ Dmitry • Eric Wanjau
08 ราคาฟักทองในอเมริกาเหนือ 🎃 Regression สร้างโมเดลการถดถอยโลจิสติก PythonR Jen • Eric Wanjau
09 แอปพลิเคชันเว็บ 🔌 Web App สร้างแอปพลิเคชันเว็บเพื่อใช้งานโมเดลที่คุณฝึกฝน Python Jen
10 บทนำสู่การจัดประเภท Classification ทำความสะอาด เตรียม และแสดงผลข้อมูลของคุณ; บทนำสู่การจัดประเภท PythonR Jen และ Cassie • Eric Wanjau
11 อาหารเอเชียและอินเดียแสนอร่อย 🍜 Classification บทนำสู่ตัวจัดประเภท PythonR Jen และ Cassie • Eric Wanjau
12 อาหารเอเชียและอินเดียแสนอร่อย 🍜 Classification ตัวจัดประเภทเพิ่มเติม PythonR Jen และ Cassie • Eric Wanjau
13 อาหารเอเชียและอินเดียแสนอร่อย 🍜 Classification สร้างแอปพลิเคชันเว็บแนะนำโดยใช้โมเดลของคุณ Python Jen
14 บทนำสู่การจัดกลุ่ม Clustering ทำความสะอาด เตรียม และแสดงผลข้อมูลของคุณ; บทนำสู่การจัดกลุ่ม PythonR Jen • Eric Wanjau
15 สำรวจรสนิยมดนตรีของไนจีเรีย 🎧 Clustering สำรวจวิธีการจัดกลุ่มแบบ K-Means PythonR Jen • Eric Wanjau
16 บทนำสู่การประมวลผลภาษาธรรมชาติ Natural language processing เรียนรู้พื้นฐานเกี่ยวกับ NLP โดยการสร้างบอทง่ายๆ Python Stephen
17 งาน NLP ทั่วไป Natural language processing เพิ่มพูนความรู้เกี่ยวกับ NLP โดยทำความเข้าใจงานทั่วไปที่เกี่ยวข้องกับโครงสร้างภาษา Python Stephen
18 การแปลและการวิเคราะห์ความรู้สึก ♥️ Natural language processing การแปลและการวิเคราะห์ความรู้สึกด้วย Jane Austen Python Stephen
19 โรงแรมโรแมนติกในยุโรป ♥️ Natural language processing การวิเคราะห์ความรู้สึกด้วยรีวิวโรงแรม 1 Python Stephen
20 โรงแรมโรแมนติกในยุโรป ♥️ Natural language processing การวิเคราะห์ความรู้สึกด้วยรีวิวโรงแรม 2 Python Stephen
21 บทนำสู่การพยากรณ์อนุกรมเวลา Time series บทนำสู่การพยากรณ์อนุกรมเวลา Python Francesca
22 การใช้พลังงานโลก - การพยากรณ์อนุกรมเวลาด้วย ARIMA Time series การพยากรณ์อนุกรมเวลาด้วย ARIMA Python Francesca
23 การใช้พลังงานโลก - การพยากรณ์อนุกรมเวลาด้วย SVR Time series การพยากรณ์อนุกรมเวลาด้วย Support Vector Regressor Python Anirban
24 บทนำสู่การเรียนรู้เสริมกำลัง Reinforcement learning บทนำสู่การเรียนรู้เสริมกำลังด้วย Q-Learning Python Dmitry
25 ช่วยปีเตอร์หนีหมาป่า! 🐺 Reinforcement learning การเรียนรู้เสริมกำลังใน Gym Python Dmitry
Postscript สถานการณ์และการประยุกต์ใช้ ML ในโลกจริง ML in the Wild การประยุกต์ใช้ ML แบบคลาสสิกในโลกจริงที่น่าสนใจและเปิดเผย Lesson Team
Postscript การดีบักโมเดลใน ML ด้วยแดชบอร์ด RAI ML in the Wild การดีบักโมเดลใน Machine Learning ด้วยส่วนประกอบแดชบอร์ด Responsible AI Lesson Ruth Yakubu

ค้นหาทรัพยากรเพิ่มเติมสำหรับคอร์สนี้ใน Microsoft Learn collection ของเรา

การเข้าถึงแบบออฟไลน์

คุณสามารถเรียกใช้เอกสารนี้แบบออฟไลน์ได้โดยใช้ Docsify. Fork repo นี้, ติดตั้ง Docsify บนเครื่องของคุณ, และในโฟลเดอร์ root ของ repo นี้, พิมพ์ docsify serve. เว็บไซต์จะถูกให้บริการบนพอร์ต 3000 บน localhost ของคุณ: localhost:3000.

PDFs

ค้นหาไฟล์ pdf ของหลักสูตรพร้อมลิงก์ ที่นี่.

🎒 คอร์สอื่นๆ

ทีมของเราผลิตคอร์สอื่นๆ ด้วย! ลองดู:


ข้อจำกัดความรับผิดชอบ:
เอกสารนี้ได้รับการแปลโดยใช้บริการแปลภาษา AI Co-op Translator แม้ว่าเราจะพยายามให้การแปลมีความถูกต้อง แต่โปรดทราบว่าการแปลอัตโนมัติอาจมีข้อผิดพลาดหรือความไม่แม่นยำ เอกสารต้นฉบับในภาษาต้นทางควรถือเป็นแหล่งข้อมูลที่เชื่อถือได้ สำหรับข้อมูลที่สำคัญ ขอแนะนำให้ใช้บริการแปลภาษาจากผู้เชี่ยวชาญ เราไม่รับผิดชอบต่อความเข้าใจผิดหรือการตีความที่ผิดพลาดซึ่งเกิดจากการใช้การแปลนี้