You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ML-For-Beginners/translations/th/7-TimeSeries/README.md

5.1 KiB

การแนะนำการพยากรณ์อนุกรมเวลา

การพยากรณ์อนุกรมเวลาคืออะไร? มันคือการคาดการณ์เหตุการณ์ในอนาคตโดยการวิเคราะห์แนวโน้มในอดีต

หัวข้อภูมิภาค: การใช้ไฟฟ้าทั่วโลก

ในสองบทเรียนนี้ คุณจะได้เรียนรู้เกี่ยวกับการพยากรณ์อนุกรมเวลา ซึ่งเป็นพื้นที่ที่ค่อนข้างไม่ค่อยมีคนรู้จักในด้านการเรียนรู้ของเครื่อง แต่มีคุณค่ามากสำหรับการใช้งานในอุตสาหกรรมและธุรกิจ รวมถึงสาขาอื่นๆ แม้ว่าเครือข่ายประสาทเทียมสามารถนำมาใช้เพื่อเพิ่มประสิทธิภาพของโมเดลเหล่านี้ได้ แต่เราจะศึกษาในบริบทของการเรียนรู้ของเครื่องแบบดั้งเดิม เนื่องจากโมเดลช่วยคาดการณ์ประสิทธิภาพในอนาคตโดยอ้างอิงจากข้อมูลในอดีต

หัวข้อภูมิภาคของเราคือการใช้ไฟฟ้าทั่วโลก ซึ่งเป็นชุดข้อมูลที่น่าสนใจสำหรับการเรียนรู้เกี่ยวกับการพยากรณ์การใช้พลังงานในอนาคตโดยอ้างอิงจากรูปแบบการใช้ในอดีต คุณจะเห็นว่าการพยากรณ์ประเภทนี้สามารถเป็นประโยชน์อย่างมากในสภาพแวดล้อมทางธุรกิจ

electric grid

ภาพถ่ายโดย Peddi Sai hrithik ของเสาไฟฟ้าบนถนนในรัฐราชสถานบน Unsplash

บทเรียน

  1. การแนะนำการพยากรณ์อนุกรมเวลา
  2. การสร้างโมเดล ARIMA สำหรับอนุกรมเวลา
  3. การสร้าง Support Vector Regressor สำหรับการพยากรณ์อนุกรมเวลา

เครดิต

"การแนะนำการพยากรณ์อนุกรมเวลา" เขียนด้วย โดย Francesca Lazzeri และ Jen Looper โน้ตบุ๊กปรากฏออนไลน์ครั้งแรกใน Azure "Deep Learning For Time Series" repo ซึ่งเขียนโดย Francesca Lazzeri บทเรียน SVR เขียนโดย Anirban Mukherjee


ข้อจำกัดความรับผิดชอบ:
เอกสารนี้ได้รับการแปลโดยใช้บริการแปลภาษา AI Co-op Translator แม้ว่าเราจะพยายามให้การแปลมีความถูกต้อง แต่โปรดทราบว่าการแปลอัตโนมัติอาจมีข้อผิดพลาดหรือความไม่แม่นยำ เอกสารต้นฉบับในภาษาต้นทางควรถือเป็นแหล่งข้อมูลที่เชื่อถือได้ สำหรับข้อมูลที่สำคัญ ขอแนะนำให้ใช้บริการแปลภาษาจากผู้เชี่ยวชาญ เราไม่รับผิดชอบต่อความเข้าใจผิดหรือการตีความที่ผิดพลาดซึ่งเกิดจากการใช้การแปลนี้