You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ML-For-Beginners/translations/th/1-Introduction/4-techniques-of-ML/README.md

26 KiB

เทคนิคการเรียนรู้ของเครื่อง

กระบวนการสร้าง ใช้งาน และดูแลรักษาโมเดลการเรียนรู้ของเครื่องและข้อมูลที่ใช้ เป็นกระบวนการที่แตกต่างจากเวิร์กโฟลว์การพัฒนาหลายประเภท ในบทเรียนนี้ เราจะทำให้กระบวนการนี้เข้าใจง่ายขึ้น และสรุปเทคนิคหลักที่คุณจำเป็นต้องรู้ คุณจะได้:

  • เข้าใจกระบวนการพื้นฐานของการเรียนรู้ของเครื่องในระดับสูง
  • สำรวจแนวคิดพื้นฐาน เช่น 'โมเดล', 'การทำนาย', และ 'ข้อมูลการฝึก'

แบบทดสอบก่อนเรียน

ML for beginners - Techniques of Machine Learning

🎥 คลิกที่ภาพด้านบนเพื่อดูวิดีโอสั้น ๆ เกี่ยวกับบทเรียนนี้

บทนำ

ในระดับสูง งานสร้างกระบวนการเรียนรู้ของเครื่อง (ML) ประกอบด้วยหลายขั้นตอน:

  1. กำหนดคำถาม. กระบวนการ ML ส่วนใหญ่เริ่มต้นด้วยการตั้งคำถามที่ไม่สามารถตอบได้ด้วยโปรแกรมเงื่อนไขง่าย ๆ หรือเครื่องมือที่ใช้กฎ คำถามเหล่านี้มักเกี่ยวข้องกับการทำนายโดยอิงจากชุดข้อมูล
  2. รวบรวมและเตรียมข้อมูล. เพื่อที่จะตอบคำถามของคุณ คุณต้องมีข้อมูล คุณภาพและบางครั้งปริมาณของข้อมูลจะกำหนดว่าคุณสามารถตอบคำถามเริ่มต้นได้ดีแค่ไหน การแสดงภาพข้อมูลเป็นส่วนสำคัญในขั้นตอนนี้ ขั้นตอนนี้ยังรวมถึงการแบ่งข้อมูลออกเป็นกลุ่มสำหรับการฝึกและการทดสอบเพื่อสร้างโมเดล
  3. เลือกวิธีการฝึก. ขึ้นอยู่กับคำถามและลักษณะของข้อมูล คุณต้องเลือกวิธีการฝึกโมเดลเพื่อให้สะท้อนข้อมูลได้ดีที่สุดและทำการทำนายที่แม่นยำ
  4. ฝึกโมเดล. โดยใช้ข้อมูลการฝึก คุณจะใช้อัลกอริทึมต่าง ๆ เพื่อฝึกโมเดลให้รู้จักรูปแบบในข้อมูล โมเดลอาจใช้น้ำหนักภายในที่สามารถปรับเปลี่ยนได้เพื่อให้ความสำคัญกับบางส่วนของข้อมูลมากกว่าส่วนอื่น ๆ เพื่อสร้างโมเดลที่ดีกว่า
  5. ประเมินโมเดล. คุณใช้ข้อมูลที่ไม่เคยเห็นมาก่อน (ข้อมูลการทดสอบ) จากชุดข้อมูลที่รวบรวมมาเพื่อดูว่าโมเดลทำงานได้ดีแค่ไหน
  6. ปรับแต่งพารามิเตอร์. จากประสิทธิภาพของโมเดล คุณสามารถทำกระบวนการใหม่โดยใช้พารามิเตอร์หรือตัวแปรที่แตกต่างกันซึ่งควบคุมพฤติกรรมของอัลกอริทึมที่ใช้ฝึกโมเดล
  7. ทำนาย. ใช้ข้อมูลใหม่เพื่อทดสอบความแม่นยำของโมเดล

คำถามที่ควรถาม

คอมพิวเตอร์มีความสามารถพิเศษในการค้นหารูปแบบที่ซ่อนอยู่ในข้อมูล ความสามารถนี้มีประโยชน์มากสำหรับนักวิจัยที่มีคำถามเกี่ยวกับโดเมนที่ไม่สามารถตอบได้ง่าย ๆ ด้วยการสร้างเครื่องมือที่ใช้กฎเงื่อนไข ตัวอย่างเช่น ในงานด้านประกันภัย นักวิทยาศาสตร์ข้อมูลอาจสร้างกฎที่กำหนดเองเกี่ยวกับอัตราการเสียชีวิตของผู้สูบบุหรี่เทียบกับผู้ไม่สูบบุหรี่

เมื่อมีตัวแปรอื่น ๆ เข้ามาในสมการ โมเดล ML อาจมีประสิทธิภาพมากกว่าในการทำนายอัตราการเสียชีวิตในอนาคตโดยอิงจากประวัติสุขภาพที่ผ่านมา ตัวอย่างที่น่าสนใจมากขึ้นอาจเป็นการทำนายสภาพอากาศสำหรับเดือนเมษายนในสถานที่หนึ่งโดยอิงจากข้อมูลที่รวมถึงละติจูด ลองจิจูด การเปลี่ยนแปลงสภาพภูมิอากาศ ความใกล้ชิดกับมหาสมุทร รูปแบบของกระแสลม และอื่น ๆ

สไลด์นี้ เกี่ยวกับโมเดลสภาพอากาศให้มุมมองทางประวัติศาสตร์เกี่ยวกับการใช้ ML ในการวิเคราะห์สภาพอากาศ

งานก่อนการสร้างโมเดล

ก่อนเริ่มสร้างโมเดลของคุณ มีหลายงานที่คุณต้องทำ เพื่อทดสอบคำถามของคุณและสร้างสมมติฐานโดยอิงจากการทำนายของโมเดล คุณต้องระบุและกำหนดองค์ประกอบหลายอย่าง

ข้อมูล

เพื่อที่จะตอบคำถามของคุณด้วยความมั่นใจ คุณต้องมีข้อมูลที่ดีในปริมาณที่เหมาะสม มีสองสิ่งที่คุณต้องทำในขั้นตอนนี้:

  • รวบรวมข้อมูล. โดยคำนึงถึงบทเรียนก่อนหน้านี้เกี่ยวกับความยุติธรรมในการวิเคราะห์ข้อมูล รวบรวมข้อมูลของคุณอย่างระมัดระวัง ระวังแหล่งที่มาของข้อมูลนี้ อคติที่อาจมี และบันทึกที่มาของข้อมูล
  • เตรียมข้อมูล. มีหลายขั้นตอนในกระบวนการเตรียมข้อมูล คุณอาจต้องรวบรวมข้อมูลและปรับให้เป็นมาตรฐานหากมาจากแหล่งที่หลากหลาย คุณสามารถปรับปรุงคุณภาพและปริมาณของข้อมูลผ่านวิธีการต่าง ๆ เช่น การแปลงข้อความเป็นตัวเลข (ดังที่เราทำใน Clustering) คุณอาจสร้างข้อมูลใหม่โดยอิงจากข้อมูลเดิม (ดังที่เราทำใน Classification) คุณสามารถทำความสะอาดและแก้ไขข้อมูล (ดังที่เราจะทำก่อนบทเรียน Web App) สุดท้าย คุณอาจต้องสุ่มและสับข้อมูล ขึ้นอยู่กับเทคนิคการฝึกของคุณ

หลังจากรวบรวมและประมวลผลข้อมูลของคุณ ใช้เวลาสักครู่เพื่อดูว่ารูปร่างของข้อมูลจะช่วยให้คุณตอบคำถามที่ตั้งใจไว้ได้หรือไม่ อาจเป็นไปได้ว่าข้อมูลจะไม่ทำงานได้ดีในงานที่คุณตั้งใจไว้ ดังที่เราค้นพบในบทเรียน Clustering!

คุณลักษณะและเป้าหมาย

คุณลักษณะ คือคุณสมบัติที่สามารถวัดได้ของข้อมูล ในชุดข้อมูลหลายชุดจะแสดงเป็นหัวข้อคอลัมน์ เช่น 'วันที่' 'ขนาด' หรือ 'สี' ตัวแปรคุณลักษณะของคุณ ซึ่งมักแสดงเป็น X ในโค้ด แสดงถึงตัวแปรอินพุตที่จะใช้ฝึกโมเดล

เป้าหมายคือสิ่งที่คุณพยายามทำนาย เป้าหมายซึ่งมักแสดงเป็น y ในโค้ด แสดงถึงคำตอบของคำถามที่คุณพยายามถามจากข้อมูล: ในเดือนธันวาคม ฟักทอง สีอะไร จะมีราคาถูกที่สุด? ในซานฟรานซิสโก ย่านไหนจะมี ราคาที่ดิน ดีที่สุด? บางครั้งเป้าหมายยังถูกเรียกว่าแอตทริบิวต์ป้ายกำกับ

การเลือกตัวแปรคุณลักษณะ

🎓 การเลือกคุณลักษณะและการสกัดคุณลักษณะ คุณจะรู้ได้อย่างไรว่าควรเลือกตัวแปรใดเมื่อสร้างโมเดล? คุณอาจต้องผ่านกระบวนการเลือกคุณลักษณะหรือการสกัดคุณลักษณะเพื่อเลือกตัวแปรที่เหมาะสมที่สุดสำหรับโมเดลที่มีประสิทธิภาพสูงสุด อย่างไรก็ตาม ทั้งสองกระบวนการไม่เหมือนกัน: "การสกัดคุณลักษณะสร้างคุณลักษณะใหม่จากฟังก์ชันของคุณลักษณะเดิม ในขณะที่การเลือกคุณลักษณะจะคืนชุดย่อยของคุณลักษณะ" (แหล่งข้อมูล)

การแสดงภาพข้อมูล

ส่วนสำคัญของเครื่องมือของนักวิทยาศาสตร์ข้อมูลคือพลังในการแสดงภาพข้อมูลโดยใช้ไลบรารีที่ยอดเยี่ยมหลายตัว เช่น Seaborn หรือ MatPlotLib การแสดงข้อมูลของคุณในรูปแบบภาพอาจช่วยให้คุณค้นพบความสัมพันธ์ที่ซ่อนอยู่ซึ่งคุณสามารถใช้ประโยชน์ได้ การแสดงภาพของคุณอาจช่วยให้คุณค้นพบอคติหรือข้อมูลที่ไม่สมดุล (ดังที่เราค้นพบใน Classification)

การแบ่งชุดข้อมูล

ก่อนการฝึก คุณต้องแบ่งชุดข้อมูลของคุณออกเป็นสองส่วนหรือมากกว่าที่มีขนาดไม่เท่ากันแต่ยังคงแสดงข้อมูลได้ดี

  • การฝึก. ส่วนนี้ของชุดข้อมูลจะถูกใช้เพื่อฝึกโมเดลของคุณ ชุดนี้ประกอบด้วยส่วนใหญ่ของชุดข้อมูลเดิม
  • การทดสอบ. ชุดข้อมูลทดสอบเป็นกลุ่มข้อมูลอิสระที่มักรวบรวมจากข้อมูลเดิม ซึ่งคุณใช้เพื่อยืนยันประสิทธิภาพของโมเดลที่สร้างขึ้น
  • การตรวจสอบ. ชุดตรวจสอบเป็นกลุ่มตัวอย่างอิสระขนาดเล็กที่คุณใช้ปรับแต่งพารามิเตอร์ไฮเปอร์ หรือโครงสร้างของโมเดลเพื่อปรับปรุงโมเดล ขึ้นอยู่กับขนาดของข้อมูลและคำถามที่คุณถาม คุณอาจไม่จำเป็นต้องสร้างชุดที่สามนี้ (ดังที่เราสังเกตใน Time Series Forecasting)

การสร้างโมเดล

โดยใช้ข้อมูลการฝึก เป้าหมายของคุณคือการสร้างโมเดล หรือการแสดงทางสถิติของข้อมูลของคุณ โดยใช้อัลกอริทึมต่าง ๆ เพื่อ ฝึก โมเดล การฝึกโมเดลจะเปิดโอกาสให้โมเดลได้สัมผัสกับข้อมูลและทำการสันนิษฐานเกี่ยวกับรูปแบบที่ค้นพบ ตรวจสอบ และยอมรับหรือปฏิเสธ

การตัดสินใจเลือกวิธีการฝึก

ขึ้นอยู่กับคำถามและลักษณะของข้อมูล คุณจะเลือกวิธีการฝึก โดยการสำรวจ เอกสารของ Scikit-learn - ซึ่งเราใช้ในหลักสูตรนี้ - คุณสามารถสำรวจวิธีการฝึกโมเดลได้หลายวิธี ขึ้นอยู่กับประสบการณ์ของคุณ คุณอาจต้องลองหลายวิธีเพื่อสร้างโมเดลที่ดีที่สุด คุณอาจต้องผ่านกระบวนการที่นักวิทยาศาสตร์ข้อมูลประเมินประสิทธิภาพของโมเดลโดยป้อนข้อมูลที่ไม่เคยเห็นมาก่อน ตรวจสอบความแม่นยำ อคติ และปัญหาที่ลดคุณภาพ และเลือกวิธีการฝึกที่เหมาะสมที่สุดสำหรับงานที่ทำอยู่

การฝึกโมเดล

เมื่อมีข้อมูลการฝึก คุณพร้อมที่จะ 'fit' เพื่อสร้างโมเดล คุณจะสังเกตเห็นว่าในไลบรารี ML หลายตัว คุณจะพบโค้ด 'model.fit' - ในเวลานี้คุณจะส่งตัวแปรคุณลักษณะของคุณเป็นอาร์เรย์ของค่า (มักเป็น 'X') และตัวแปรเป้าหมาย (มักเป็น 'y')

การประเมินโมเดล

เมื่อกระบวนการฝึกเสร็จสิ้น (อาจใช้หลายรอบ หรือ 'epochs' ในการฝึกโมเดลขนาดใหญ่) คุณจะสามารถประเมินคุณภาพของโมเดลได้โดยใช้ข้อมูลทดสอบเพื่อวัดประสิทธิภาพของมัน ข้อมูลนี้เป็นชุดย่อยของข้อมูลเดิมที่โมเดลยังไม่เคยวิเคราะห์มาก่อน คุณสามารถพิมพ์ตารางเมตริกเกี่ยวกับคุณภาพของโมเดลได้

🎓 การปรับโมเดล

ในบริบทของการเรียนรู้ของเครื่อง การปรับโมเดลหมายถึงความแม่นยำของฟังก์ชันพื้นฐานของโมเดลเมื่อพยายามวิเคราะห์ข้อมูลที่ไม่คุ้นเคย

🎓 การปรับไม่ดี และ การปรับมากเกินไป เป็นปัญหาทั่วไปที่ลดคุณภาพของโมเดล เนื่องจากโมเดลปรับตัวไม่ดีพอหรือดีเกินไป สิ่งนี้ทำให้โมเดลทำการทำนายที่สอดคล้องกับข้อมูลการฝึกมากเกินไปหรือหลวมเกินไป โมเดลที่ปรับมากเกินไปจะทำนายข้อมูลการฝึกได้ดีเกินไปเพราะมันเรียนรู้รายละเอียดและเสียงรบกวนของข้อมูลมากเกินไป โมเดลที่ปรับไม่ดีจะไม่แม่นยำเพราะไม่สามารถวิเคราะห์ข้อมูลการฝึกหรือข้อมูลที่ยังไม่เคยเห็นได้อย่างถูกต้อง

overfitting model

อินโฟกราฟิกโดย Jen Looper

การปรับแต่งพารามิเตอร์

เมื่อการฝึกครั้งแรกเสร็จสิ้น สังเกตคุณภาพของโมเดลและพิจารณาปรับปรุงโดยการปรับ 'พารามิเตอร์ไฮเปอร์' อ่านเพิ่มเติมเกี่ยวกับกระบวนการนี้ ในเอกสาร

การทำนาย

นี่คือช่วงเวลาที่คุณสามารถใช้ข้อมูลใหม่ทั้งหมดเพื่อทดสอบความแม่นยำของโมเดล ในการตั้งค่า ML ที่ 'นำไปใช้' ซึ่งคุณกำลังสร้างสินทรัพย์เว็บเพื่อใช้โมเดลในระบบผลิต การทำนายอาจเกี่ยวข้องกับการรวบรวมข้อมูลจากผู้ใช้ (เช่น การกดปุ่ม) เพื่อกำหนดตัวแปรและส่งไปยังโมเดลเพื่อการอนุมานหรือการประเมินผล

ในบทเรียนเหล่านี้ คุณจะค้นพบวิธีใช้ขั้นตอนเหล่านี้เพื่อเตรียม สร้าง ทดสอบ ประเมิน และทำนาย - ทุกขั้นตอนของนักวิทยาศาสตร์ข้อมูลและอื่น ๆ ในขณะที่คุณก้าวหน้าในเส้นทางสู่การเป็นวิศวกร ML 'เต็มรูปแบบ'


🚀ความท้าทาย

วาดแผนภาพแสดงขั้นตอนของนักปฏิบัติ ML ตอนนี้คุณอยู่ในขั้นตอนใดในกระบวนการ? คุณคาดว่าจะพบความยากลำบากที่ไหน? อะไรที่ดูเหมือนง่ายสำหรับคุณ?

แบบทดสอบหลังเรียน

ทบทวนและศึกษาด้วยตนเอง

ค้นหาสัมภาษณ์ออนไลน์กับนักวิทยาศาสตร์ข้อมูลที่พูดคุยเกี่ยวกับงานประจำวันของพวกเขา นี่คือ หนึ่งตัวอย่าง

งานที่ได้รับมอบหมาย

สัมภาษณ์นักวิทยาศาสตร์ข้อมูล


ข้อจำกัดความรับผิดชอบ:
เอกสารนี้ได้รับการแปลโดยใช้บริการแปลภาษา AI Co-op Translator แม้ว่าเราจะพยายามให้การแปลมีความถูกต้อง แต่โปรดทราบว่าการแปลอัตโนมัติอาจมีข้อผิดพลาดหรือความไม่แม่นยำ เอกสารต้นฉบับในภาษาต้นทางควรถือเป็นแหล่งข้อมูลที่เชื่อถือได้ สำหรับข้อมูลที่สำคัญ ขอแนะนำให้ใช้บริการแปลภาษามนุษย์มืออาชีพ เราจะไม่รับผิดชอบต่อความเข้าใจผิดหรือการตีความที่ผิดพลาดซึ่งเกิดจากการใช้การแปลนี้