You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
693 lines
16 KiB
693 lines
16 KiB
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"id": "fv9OoQsMFk5A"
|
|
},
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"Katika daftari hili, tunaonyesha jinsi ya:\n",
|
|
"\n",
|
|
"- kuandaa data ya mfululizo wa muda wa 2D kwa ajili ya kufundisha mfano wa SVM regressor \n",
|
|
"- kutekeleza SVR kwa kutumia kernel ya RBF \n",
|
|
"- kutathmini mfano kwa kutumia michoro na MAPE \n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Kuingiza moduli\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import sys\n",
|
|
"sys.path.append('../../')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"metadata": {
|
|
"id": "M687KNlQFp0-"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"import os\n",
|
|
"import warnings\n",
|
|
"import matplotlib.pyplot as plt\n",
|
|
"import numpy as np\n",
|
|
"import pandas as pd\n",
|
|
"import datetime as dt\n",
|
|
"import math\n",
|
|
"\n",
|
|
"from sklearn.svm import SVR\n",
|
|
"from sklearn.preprocessing import MinMaxScaler\n",
|
|
"from common.utils import load_data, mape"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"id": "Cj-kfVdMGjWP"
|
|
},
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"id": "8fywSjC6GsRz"
|
|
},
|
|
"source": [
|
|
"### Pakia data\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"metadata": {
|
|
"colab": {
|
|
"base_uri": "https://localhost:8080/",
|
|
"height": 363
|
|
},
|
|
"id": "aBDkEB11Fumg",
|
|
"outputId": "99cf7987-0509-4b73-8cc2-75d7da0d2740"
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr style=\"text-align: right;\">\n",
|
|
" <th></th>\n",
|
|
" <th>load</th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>2012-01-01 00:00:00</th>\n",
|
|
" <td>2698.0</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>2012-01-01 01:00:00</th>\n",
|
|
" <td>2558.0</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>2012-01-01 02:00:00</th>\n",
|
|
" <td>2444.0</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>2012-01-01 03:00:00</th>\n",
|
|
" <td>2402.0</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>2012-01-01 04:00:00</th>\n",
|
|
" <td>2403.0</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
],
|
|
"text/plain": [
|
|
" load\n",
|
|
"2012-01-01 00:00:00 2698.0\n",
|
|
"2012-01-01 01:00:00 2558.0\n",
|
|
"2012-01-01 02:00:00 2444.0\n",
|
|
"2012-01-01 03:00:00 2402.0\n",
|
|
"2012-01-01 04:00:00 2403.0"
|
|
]
|
|
},
|
|
"execution_count": 3,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"energy = load_data('../../data')[['load']]\n",
|
|
"energy.head(5)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"id": "O0BWP13rGnh4"
|
|
},
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"colab": {
|
|
"base_uri": "https://localhost:8080/",
|
|
"height": 486
|
|
},
|
|
"id": "hGaNPKu_Gidk",
|
|
"outputId": "7f89b326-9057-4f49-efbe-cb100ebdf76d"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12)\n",
|
|
"plt.xlabel('timestamp', fontsize=12)\n",
|
|
"plt.ylabel('load', fontsize=12)\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"id": "IPuNor4eGwYY"
|
|
},
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"id": "ysvsNyONGt0Q"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"train_start_dt = '2014-11-01 00:00:00'\n",
|
|
"test_start_dt = '2014-12-30 00:00:00'"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"colab": {
|
|
"base_uri": "https://localhost:8080/",
|
|
"height": 548
|
|
},
|
|
"id": "SsfdLoPyGy9w",
|
|
"outputId": "d6d6c25b-b1f4-47e5-91d1-707e043237d7"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)][['load']].rename(columns={'load':'train'}) \\\n",
|
|
" .join(energy[test_start_dt:][['load']].rename(columns={'load':'test'}), how='outer') \\\n",
|
|
" .plot(y=['train', 'test'], figsize=(15, 8), fontsize=12)\n",
|
|
"plt.xlabel('timestamp', fontsize=12)\n",
|
|
"plt.ylabel('load', fontsize=12)\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"id": "XbFTqBw6G1Ch"
|
|
},
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"Sasa, unahitaji kuandaa data kwa mafunzo kwa kufanya uchujaji na kupima data yako.\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"colab": {
|
|
"base_uri": "https://localhost:8080/"
|
|
},
|
|
"id": "cYivRdQpHDj3",
|
|
"outputId": "a138f746-461c-4fd6-bfa6-0cee094c4aa1"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"train = energy.copy()[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']]\n",
|
|
"test = energy.copy()[energy.index >= test_start_dt][['load']]\n",
|
|
"\n",
|
|
"print('Training data shape: ', train.shape)\n",
|
|
"print('Test data shape: ', test.shape)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"Pima data kuwa katika kiwango (0, 1).\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"colab": {
|
|
"base_uri": "https://localhost:8080/",
|
|
"height": 363
|
|
},
|
|
"id": "3DNntGQnZX8G",
|
|
"outputId": "210046bc-7a66-4ccd-d70d-aa4a7309949c"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"scaler = MinMaxScaler()\n",
|
|
"train['load'] = scaler.fit_transform(train)\n",
|
|
"train.head(5)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"colab": {
|
|
"base_uri": "https://localhost:8080/",
|
|
"height": 206
|
|
},
|
|
"id": "26Yht-rzZexe",
|
|
"outputId": "20326077-a38a-4e78-cc5b-6fd7af95d301"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"test['load'] = scaler.transform(test)\n",
|
|
"test.head(5)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"id": "x0n6jqxOQ41Z"
|
|
},
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"id": "fdmxTZtOQ8xs"
|
|
},
|
|
"source": [
|
|
"Kwa SVR yetu, tunabadilisha data ya ingizo kuwa katika umbo la `[batch, timesteps]`. Kwa hivyo, tunabadilisha umbo la `train_data` na `test_data` zilizopo ili kuwe na kipimo kipya kinachorejelea timesteps. Kwa mfano wetu, tunachukua `timesteps = 5`. Kwa hivyo, viingizo kwa mfano ni data ya timesteps 4 za kwanza, na matokeo yatakuwa data ya timestep ya 5.\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"id": "Rpju-Sc2HFm0"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Converting to numpy arrays\n",
|
|
"\n",
|
|
"train_data = train.values\n",
|
|
"test_data = test.values"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Selecting the timesteps\n",
|
|
"\n",
|
|
"timesteps=None"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"colab": {
|
|
"base_uri": "https://localhost:8080/"
|
|
},
|
|
"id": "O-JrsrsVJhUQ",
|
|
"outputId": "c90dbe71-bacc-4ec4-b452-f82fe5aefaef"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Converting data to 2D tensor\n",
|
|
"\n",
|
|
"train_data_timesteps=None"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"colab": {
|
|
"base_uri": "https://localhost:8080/"
|
|
},
|
|
"id": "exJD8AI7KE4g",
|
|
"outputId": "ce90260c-f327-427d-80f2-77307b5a6318"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Converting test data to 2D tensor\n",
|
|
"\n",
|
|
"test_data_timesteps=None"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"id": "2u0R2sIsLuq5"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"x_train, y_train = None\n",
|
|
"x_test, y_test = None\n",
|
|
"\n",
|
|
"print(x_train.shape, y_train.shape)\n",
|
|
"print(x_test.shape, y_test.shape)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"id": "8wIPOtAGLZlh"
|
|
},
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"id": "EhA403BEPEiD"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Create model using RBF kernel\n",
|
|
"\n",
|
|
"model = None"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"colab": {
|
|
"base_uri": "https://localhost:8080/"
|
|
},
|
|
"id": "GS0UA3csMbqp",
|
|
"outputId": "d86b6f05-5742-4c1d-c2db-c40510bd4f0d"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Fit model on training data"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"id": "Rz_x8S3UrlcF"
|
|
},
|
|
"source": [
|
|
"### Fanya utabiri wa mfano\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"colab": {
|
|
"base_uri": "https://localhost:8080/"
|
|
},
|
|
"id": "XR0gnt3MnuYS",
|
|
"outputId": "157e40ab-9a23-4b66-a885-0d52a24b2364"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Making predictions\n",
|
|
"\n",
|
|
"y_train_pred = None\n",
|
|
"y_test_pred = None"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"id": "_2epncg-SGzr"
|
|
},
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Scaling the predictions\n",
|
|
"\n",
|
|
"y_train_pred = scaler.inverse_transform(y_train_pred)\n",
|
|
"y_test_pred = scaler.inverse_transform(y_test_pred)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"colab": {
|
|
"base_uri": "https://localhost:8080/"
|
|
},
|
|
"id": "xmm_YLXhq7gV",
|
|
"outputId": "18392f64-4029-49ac-c71a-a4e2411152a1"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Scaling the original values\n",
|
|
"\n",
|
|
"y_train = scaler.inverse_transform(y_train)\n",
|
|
"y_test = scaler.inverse_transform(y_test)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"colab": {
|
|
"base_uri": "https://localhost:8080/"
|
|
},
|
|
"id": "u3LBj93coHEi",
|
|
"outputId": "d4fd49e8-8c6e-4bb0-8ef9-ca0b26d725b4"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Extract the timesteps for x-axis\n",
|
|
"\n",
|
|
"train_timestamps = None\n",
|
|
"test_timestamps = None"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"plt.figure(figsize=(25,6))\n",
|
|
"# plot original output\n",
|
|
"# plot predicted output\n",
|
|
"plt.legend(['Actual','Predicted'])\n",
|
|
"plt.xlabel('Timestamp')\n",
|
|
"plt.title(\"Training data prediction\")\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"colab": {
|
|
"base_uri": "https://localhost:8080/"
|
|
},
|
|
"id": "LnhzcnYtXHCm",
|
|
"outputId": "f5f0d711-f18b-4788-ad21-d4470ea2c02b"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"print('MAPE for training data: ', mape(y_train_pred, y_train)*100, '%')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"colab": {
|
|
"base_uri": "https://localhost:8080/",
|
|
"height": 225
|
|
},
|
|
"id": "53Q02FoqQH4V",
|
|
"outputId": "53e2d59b-5075-4765-ad9e-aed56c966583"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"plt.figure(figsize=(10,3))\n",
|
|
"# plot original output\n",
|
|
"# plot predicted output\n",
|
|
"plt.legend(['Actual','Predicted'])\n",
|
|
"plt.xlabel('Timestamp')\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"colab": {
|
|
"base_uri": "https://localhost:8080/"
|
|
},
|
|
"id": "clOAUH-SXCJG",
|
|
"outputId": "a3aa85ff-126a-4a4a-cd9e-90b9cc465ef5"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"print('MAPE for testing data: ', mape(y_test_pred, y_test)*100, '%')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"id": "DHlKvVCId5ue"
|
|
},
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"colab": {
|
|
"base_uri": "https://localhost:8080/"
|
|
},
|
|
"id": "cOFJ45vreO0N",
|
|
"outputId": "35628e33-ecf9-4966-8036-f7ea86db6f16"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Extracting load values as numpy array\n",
|
|
"data = None\n",
|
|
"\n",
|
|
"# Scaling\n",
|
|
"data = None\n",
|
|
"\n",
|
|
"# Transforming to 2D tensor as per model input requirement\n",
|
|
"data_timesteps=None\n",
|
|
"\n",
|
|
"# Selecting inputs and outputs from data\n",
|
|
"X, Y = None, None"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"id": "ESSAdQgwexIi"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Make model predictions\n",
|
|
"\n",
|
|
"# Inverse scale and reshape\n",
|
|
"Y_pred = None\n",
|
|
"Y = None"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"colab": {
|
|
"base_uri": "https://localhost:8080/",
|
|
"height": 328
|
|
},
|
|
"id": "M_qhihN0RVVX",
|
|
"outputId": "a89cb23e-1d35-437f-9d63-8b8907e12f80"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"plt.figure(figsize=(30,8))\n",
|
|
"# plot original output\n",
|
|
"# plot predicted output\n",
|
|
"plt.legend(['Actual','Predicted'])\n",
|
|
"plt.xlabel('Timestamp')\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"colab": {
|
|
"base_uri": "https://localhost:8080/"
|
|
},
|
|
"id": "AcN7pMYXVGTK",
|
|
"outputId": "7e1c2161-47ce-496c-9d86-7ad9ae0df770"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"print('MAPE: ', mape(Y_pred, Y)*100, '%')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"\n---\n\n**Kanusho**: \nHati hii imetafsiriwa kwa kutumia huduma ya tafsiri ya AI [Co-op Translator](https://github.com/Azure/co-op-translator). Ingawa tunajitahidi kwa usahihi, tafadhali fahamu kuwa tafsiri za kiotomatiki zinaweza kuwa na makosa au kutokuwa sahihi. Hati ya asili katika lugha yake ya awali inapaswa kuzingatiwa kama chanzo cha mamlaka. Kwa taarifa muhimu, inashauriwa kutumia huduma ya tafsiri ya kitaalamu ya binadamu. Hatutawajibika kwa maelewano mabaya au tafsiri zisizo sahihi zinazotokana na matumizi ya tafsiri hii.\n"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"accelerator": "GPU",
|
|
"colab": {
|
|
"collapsed_sections": [],
|
|
"name": "Recurrent_Neural_Networks.ipynb",
|
|
"provenance": []
|
|
},
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.7.1"
|
|
},
|
|
"coopTranslator": {
|
|
"original_hash": "e86ce102239a14c44585623b9b924a74",
|
|
"translation_date": "2025-09-06T14:06:58+00:00",
|
|
"source_file": "7-TimeSeries/3-SVR/working/notebook.ipynb",
|
|
"language_code": "sw"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 1
|
|
} |