You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
701 lines
16 KiB
701 lines
16 KiB
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"id": "fv9OoQsMFk5A"
|
|
},
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"I den här anteckningsboken demonstrerar vi hur man:\n",
|
|
"\n",
|
|
"- förbereder 2D-tidsseriedata för att träna en SVM-regressormodell\n",
|
|
"- implementerar SVR med hjälp av RBF-kärna\n",
|
|
"- utvärderar modellen med hjälp av diagram och MAPE\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Importera moduler\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import sys\n",
|
|
"sys.path.append('../../')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"metadata": {
|
|
"id": "M687KNlQFp0-"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"import os\n",
|
|
"import warnings\n",
|
|
"import matplotlib.pyplot as plt\n",
|
|
"import numpy as np\n",
|
|
"import pandas as pd\n",
|
|
"import datetime as dt\n",
|
|
"import math\n",
|
|
"\n",
|
|
"from sklearn.svm import SVR\n",
|
|
"from sklearn.preprocessing import MinMaxScaler\n",
|
|
"from common.utils import load_data, mape"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"id": "Cj-kfVdMGjWP"
|
|
},
|
|
"source": [
|
|
"## Förbereder data\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"id": "8fywSjC6GsRz"
|
|
},
|
|
"source": [
|
|
"### Ladda data\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"metadata": {
|
|
"colab": {
|
|
"base_uri": "https://localhost:8080/",
|
|
"height": 363
|
|
},
|
|
"id": "aBDkEB11Fumg",
|
|
"outputId": "99cf7987-0509-4b73-8cc2-75d7da0d2740"
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr style=\"text-align: right;\">\n",
|
|
" <th></th>\n",
|
|
" <th>load</th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>2012-01-01 00:00:00</th>\n",
|
|
" <td>2698.0</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>2012-01-01 01:00:00</th>\n",
|
|
" <td>2558.0</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>2012-01-01 02:00:00</th>\n",
|
|
" <td>2444.0</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>2012-01-01 03:00:00</th>\n",
|
|
" <td>2402.0</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>2012-01-01 04:00:00</th>\n",
|
|
" <td>2403.0</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
],
|
|
"text/plain": [
|
|
" load\n",
|
|
"2012-01-01 00:00:00 2698.0\n",
|
|
"2012-01-01 01:00:00 2558.0\n",
|
|
"2012-01-01 02:00:00 2444.0\n",
|
|
"2012-01-01 03:00:00 2402.0\n",
|
|
"2012-01-01 04:00:00 2403.0"
|
|
]
|
|
},
|
|
"execution_count": 3,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"energy = load_data('../../data')[['load']]\n",
|
|
"energy.head(5)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"id": "O0BWP13rGnh4"
|
|
},
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"colab": {
|
|
"base_uri": "https://localhost:8080/",
|
|
"height": 486
|
|
},
|
|
"id": "hGaNPKu_Gidk",
|
|
"outputId": "7f89b326-9057-4f49-efbe-cb100ebdf76d"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12)\n",
|
|
"plt.xlabel('timestamp', fontsize=12)\n",
|
|
"plt.ylabel('load', fontsize=12)\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"id": "IPuNor4eGwYY"
|
|
},
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"id": "ysvsNyONGt0Q"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"train_start_dt = '2014-11-01 00:00:00'\n",
|
|
"test_start_dt = '2014-12-30 00:00:00'"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"colab": {
|
|
"base_uri": "https://localhost:8080/",
|
|
"height": 548
|
|
},
|
|
"id": "SsfdLoPyGy9w",
|
|
"outputId": "d6d6c25b-b1f4-47e5-91d1-707e043237d7"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)][['load']].rename(columns={'load':'train'}) \\\n",
|
|
" .join(energy[test_start_dt:][['load']].rename(columns={'load':'test'}), how='outer') \\\n",
|
|
" .plot(y=['train', 'test'], figsize=(15, 8), fontsize=12)\n",
|
|
"plt.xlabel('timestamp', fontsize=12)\n",
|
|
"plt.ylabel('load', fontsize=12)\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"id": "XbFTqBw6G1Ch"
|
|
},
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"Nu behöver du förbereda data för träning genom att utföra filtrering och skalning av din data.\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"colab": {
|
|
"base_uri": "https://localhost:8080/"
|
|
},
|
|
"id": "cYivRdQpHDj3",
|
|
"outputId": "a138f746-461c-4fd6-bfa6-0cee094c4aa1"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"train = energy.copy()[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']]\n",
|
|
"test = energy.copy()[energy.index >= test_start_dt][['load']]\n",
|
|
"\n",
|
|
"print('Training data shape: ', train.shape)\n",
|
|
"print('Test data shape: ', test.shape)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"Skala data för att vara inom intervallet (0, 1).\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"colab": {
|
|
"base_uri": "https://localhost:8080/",
|
|
"height": 363
|
|
},
|
|
"id": "3DNntGQnZX8G",
|
|
"outputId": "210046bc-7a66-4ccd-d70d-aa4a7309949c"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"scaler = MinMaxScaler()\n",
|
|
"train['load'] = scaler.fit_transform(train)\n",
|
|
"train.head(5)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"colab": {
|
|
"base_uri": "https://localhost:8080/",
|
|
"height": 206
|
|
},
|
|
"id": "26Yht-rzZexe",
|
|
"outputId": "20326077-a38a-4e78-cc5b-6fd7af95d301"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"test['load'] = scaler.transform(test)\n",
|
|
"test.head(5)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"id": "x0n6jqxOQ41Z"
|
|
},
|
|
"source": [
|
|
"### Skapa data med tidssteg\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"id": "fdmxTZtOQ8xs"
|
|
},
|
|
"source": [
|
|
"För vår SVR transformerar vi indata till formen `[batch, timesteps]`. Så vi omformar den befintliga `train_data` och `test_data` så att det finns en ny dimension som hänvisar till tidsstegen. I vårt exempel tar vi `timesteps = 5`. Så indata till modellen är data för de första 4 tidsstegen, och utdata kommer att vara data för det 5:e tidssteget.\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"id": "Rpju-Sc2HFm0"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Converting to numpy arrays\n",
|
|
"\n",
|
|
"train_data = train.values\n",
|
|
"test_data = test.values"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Selecting the timesteps\n",
|
|
"\n",
|
|
"timesteps=None"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"colab": {
|
|
"base_uri": "https://localhost:8080/"
|
|
},
|
|
"id": "O-JrsrsVJhUQ",
|
|
"outputId": "c90dbe71-bacc-4ec4-b452-f82fe5aefaef"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Converting data to 2D tensor\n",
|
|
"\n",
|
|
"train_data_timesteps=None"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"colab": {
|
|
"base_uri": "https://localhost:8080/"
|
|
},
|
|
"id": "exJD8AI7KE4g",
|
|
"outputId": "ce90260c-f327-427d-80f2-77307b5a6318"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Converting test data to 2D tensor\n",
|
|
"\n",
|
|
"test_data_timesteps=None"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"id": "2u0R2sIsLuq5"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"x_train, y_train = None\n",
|
|
"x_test, y_test = None\n",
|
|
"\n",
|
|
"print(x_train.shape, y_train.shape)\n",
|
|
"print(x_test.shape, y_test.shape)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"id": "8wIPOtAGLZlh"
|
|
},
|
|
"source": [
|
|
"## Skapa SVR-modell\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"id": "EhA403BEPEiD"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Create model using RBF kernel\n",
|
|
"\n",
|
|
"model = None"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"colab": {
|
|
"base_uri": "https://localhost:8080/"
|
|
},
|
|
"id": "GS0UA3csMbqp",
|
|
"outputId": "d86b6f05-5742-4c1d-c2db-c40510bd4f0d"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Fit model on training data"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"id": "Rz_x8S3UrlcF"
|
|
},
|
|
"source": [
|
|
"### Gör modellförutsägelse\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"colab": {
|
|
"base_uri": "https://localhost:8080/"
|
|
},
|
|
"id": "XR0gnt3MnuYS",
|
|
"outputId": "157e40ab-9a23-4b66-a885-0d52a24b2364"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Making predictions\n",
|
|
"\n",
|
|
"y_train_pred = None\n",
|
|
"y_test_pred = None"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"id": "_2epncg-SGzr"
|
|
},
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Scaling the predictions\n",
|
|
"\n",
|
|
"y_train_pred = scaler.inverse_transform(y_train_pred)\n",
|
|
"y_test_pred = scaler.inverse_transform(y_test_pred)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"colab": {
|
|
"base_uri": "https://localhost:8080/"
|
|
},
|
|
"id": "xmm_YLXhq7gV",
|
|
"outputId": "18392f64-4029-49ac-c71a-a4e2411152a1"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Scaling the original values\n",
|
|
"\n",
|
|
"y_train = scaler.inverse_transform(y_train)\n",
|
|
"y_test = scaler.inverse_transform(y_test)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"colab": {
|
|
"base_uri": "https://localhost:8080/"
|
|
},
|
|
"id": "u3LBj93coHEi",
|
|
"outputId": "d4fd49e8-8c6e-4bb0-8ef9-ca0b26d725b4"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Extract the timesteps for x-axis\n",
|
|
"\n",
|
|
"train_timestamps = None\n",
|
|
"test_timestamps = None"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"plt.figure(figsize=(25,6))\n",
|
|
"# plot original output\n",
|
|
"# plot predicted output\n",
|
|
"plt.legend(['Actual','Predicted'])\n",
|
|
"plt.xlabel('Timestamp')\n",
|
|
"plt.title(\"Training data prediction\")\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"colab": {
|
|
"base_uri": "https://localhost:8080/"
|
|
},
|
|
"id": "LnhzcnYtXHCm",
|
|
"outputId": "f5f0d711-f18b-4788-ad21-d4470ea2c02b"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"print('MAPE for training data: ', mape(y_train_pred, y_train)*100, '%')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"colab": {
|
|
"base_uri": "https://localhost:8080/",
|
|
"height": 225
|
|
},
|
|
"id": "53Q02FoqQH4V",
|
|
"outputId": "53e2d59b-5075-4765-ad9e-aed56c966583"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"plt.figure(figsize=(10,3))\n",
|
|
"# plot original output\n",
|
|
"# plot predicted output\n",
|
|
"plt.legend(['Actual','Predicted'])\n",
|
|
"plt.xlabel('Timestamp')\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"colab": {
|
|
"base_uri": "https://localhost:8080/"
|
|
},
|
|
"id": "clOAUH-SXCJG",
|
|
"outputId": "a3aa85ff-126a-4a4a-cd9e-90b9cc465ef5"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"print('MAPE for testing data: ', mape(y_test_pred, y_test)*100, '%')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"id": "DHlKvVCId5ue"
|
|
},
|
|
"source": [
|
|
"## Fullständig datasetförutsägelse\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"colab": {
|
|
"base_uri": "https://localhost:8080/"
|
|
},
|
|
"id": "cOFJ45vreO0N",
|
|
"outputId": "35628e33-ecf9-4966-8036-f7ea86db6f16"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Extracting load values as numpy array\n",
|
|
"data = None\n",
|
|
"\n",
|
|
"# Scaling\n",
|
|
"data = None\n",
|
|
"\n",
|
|
"# Transforming to 2D tensor as per model input requirement\n",
|
|
"data_timesteps=None\n",
|
|
"\n",
|
|
"# Selecting inputs and outputs from data\n",
|
|
"X, Y = None, None"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"id": "ESSAdQgwexIi"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Make model predictions\n",
|
|
"\n",
|
|
"# Inverse scale and reshape\n",
|
|
"Y_pred = None\n",
|
|
"Y = None"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"colab": {
|
|
"base_uri": "https://localhost:8080/",
|
|
"height": 328
|
|
},
|
|
"id": "M_qhihN0RVVX",
|
|
"outputId": "a89cb23e-1d35-437f-9d63-8b8907e12f80"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"plt.figure(figsize=(30,8))\n",
|
|
"# plot original output\n",
|
|
"# plot predicted output\n",
|
|
"plt.legend(['Actual','Predicted'])\n",
|
|
"plt.xlabel('Timestamp')\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"colab": {
|
|
"base_uri": "https://localhost:8080/"
|
|
},
|
|
"id": "AcN7pMYXVGTK",
|
|
"outputId": "7e1c2161-47ce-496c-9d86-7ad9ae0df770"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"print('MAPE: ', mape(Y_pred, Y)*100, '%')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"\n---\n\n**Ansvarsfriskrivning**: \nDetta dokument har översatts med hjälp av AI-översättningstjänsten [Co-op Translator](https://github.com/Azure/co-op-translator). Även om vi strävar efter noggrannhet, vänligen notera att automatiska översättningar kan innehålla fel eller felaktigheter. Det ursprungliga dokumentet på dess originalspråk bör betraktas som den auktoritativa källan. För kritisk information rekommenderas professionell mänsklig översättning. Vi ansvarar inte för eventuella missförstånd eller feltolkningar som uppstår vid användning av denna översättning.\n"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"accelerator": "GPU",
|
|
"colab": {
|
|
"collapsed_sections": [],
|
|
"name": "Recurrent_Neural_Networks.ipynb",
|
|
"provenance": []
|
|
},
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.7.1"
|
|
},
|
|
"coopTranslator": {
|
|
"original_hash": "e86ce102239a14c44585623b9b924a74",
|
|
"translation_date": "2025-09-06T14:06:41+00:00",
|
|
"source_file": "7-TimeSeries/3-SVR/working/notebook.ipynb",
|
|
"language_code": "sv"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 1
|
|
} |