You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
699 lines
16 KiB
699 lines
16 KiB
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"id": "fv9OoQsMFk5A"
|
|
},
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"Dalam notebook ini, kami akan mendemonstrasikan cara:\n",
|
|
"\n",
|
|
"- mempersiapkan data deret waktu 2D untuk melatih model regresor SVM\n",
|
|
"- mengimplementasikan SVR menggunakan kernel RBF\n",
|
|
"- mengevaluasi model menggunakan plot dan MAPE\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Mengimpor modul\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import sys\n",
|
|
"sys.path.append('../../')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"metadata": {
|
|
"id": "M687KNlQFp0-"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"import os\n",
|
|
"import warnings\n",
|
|
"import matplotlib.pyplot as plt\n",
|
|
"import numpy as np\n",
|
|
"import pandas as pd\n",
|
|
"import datetime as dt\n",
|
|
"import math\n",
|
|
"\n",
|
|
"from sklearn.svm import SVR\n",
|
|
"from sklearn.preprocessing import MinMaxScaler\n",
|
|
"from common.utils import load_data, mape"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"id": "Cj-kfVdMGjWP"
|
|
},
|
|
"source": [
|
|
"## Menyiapkan data\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"id": "8fywSjC6GsRz"
|
|
},
|
|
"source": [
|
|
"### Muat data\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"metadata": {
|
|
"colab": {
|
|
"base_uri": "https://localhost:8080/",
|
|
"height": 363
|
|
},
|
|
"id": "aBDkEB11Fumg",
|
|
"outputId": "99cf7987-0509-4b73-8cc2-75d7da0d2740"
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr style=\"text-align: right;\">\n",
|
|
" <th></th>\n",
|
|
" <th>load</th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>2012-01-01 00:00:00</th>\n",
|
|
" <td>2698.0</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>2012-01-01 01:00:00</th>\n",
|
|
" <td>2558.0</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>2012-01-01 02:00:00</th>\n",
|
|
" <td>2444.0</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>2012-01-01 03:00:00</th>\n",
|
|
" <td>2402.0</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>2012-01-01 04:00:00</th>\n",
|
|
" <td>2403.0</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
],
|
|
"text/plain": [
|
|
" load\n",
|
|
"2012-01-01 00:00:00 2698.0\n",
|
|
"2012-01-01 01:00:00 2558.0\n",
|
|
"2012-01-01 02:00:00 2444.0\n",
|
|
"2012-01-01 03:00:00 2402.0\n",
|
|
"2012-01-01 04:00:00 2403.0"
|
|
]
|
|
},
|
|
"execution_count": 3,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"energy = load_data('../../data')[['load']]\n",
|
|
"energy.head(5)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"id": "O0BWP13rGnh4"
|
|
},
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"colab": {
|
|
"base_uri": "https://localhost:8080/",
|
|
"height": 486
|
|
},
|
|
"id": "hGaNPKu_Gidk",
|
|
"outputId": "7f89b326-9057-4f49-efbe-cb100ebdf76d"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12)\n",
|
|
"plt.xlabel('timestamp', fontsize=12)\n",
|
|
"plt.ylabel('load', fontsize=12)\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"id": "IPuNor4eGwYY"
|
|
},
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"id": "ysvsNyONGt0Q"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"train_start_dt = '2014-11-01 00:00:00'\n",
|
|
"test_start_dt = '2014-12-30 00:00:00'"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"colab": {
|
|
"base_uri": "https://localhost:8080/",
|
|
"height": 548
|
|
},
|
|
"id": "SsfdLoPyGy9w",
|
|
"outputId": "d6d6c25b-b1f4-47e5-91d1-707e043237d7"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)][['load']].rename(columns={'load':'train'}) \\\n",
|
|
" .join(energy[test_start_dt:][['load']].rename(columns={'load':'test'}), how='outer') \\\n",
|
|
" .plot(y=['train', 'test'], figsize=(15, 8), fontsize=12)\n",
|
|
"plt.xlabel('timestamp', fontsize=12)\n",
|
|
"plt.ylabel('load', fontsize=12)\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"id": "XbFTqBw6G1Ch"
|
|
},
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"Sekarang, Anda perlu menyiapkan data untuk pelatihan dengan melakukan penyaringan dan penskalaan data Anda.\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"colab": {
|
|
"base_uri": "https://localhost:8080/"
|
|
},
|
|
"id": "cYivRdQpHDj3",
|
|
"outputId": "a138f746-461c-4fd6-bfa6-0cee094c4aa1"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"train = energy.copy()[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']]\n",
|
|
"test = energy.copy()[energy.index >= test_start_dt][['load']]\n",
|
|
"\n",
|
|
"print('Training data shape: ', train.shape)\n",
|
|
"print('Test data shape: ', test.shape)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"Skalakan data agar berada dalam rentang (0, 1).\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"colab": {
|
|
"base_uri": "https://localhost:8080/",
|
|
"height": 363
|
|
},
|
|
"id": "3DNntGQnZX8G",
|
|
"outputId": "210046bc-7a66-4ccd-d70d-aa4a7309949c"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"scaler = MinMaxScaler()\n",
|
|
"train['load'] = scaler.fit_transform(train)\n",
|
|
"train.head(5)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"colab": {
|
|
"base_uri": "https://localhost:8080/",
|
|
"height": 206
|
|
},
|
|
"id": "26Yht-rzZexe",
|
|
"outputId": "20326077-a38a-4e78-cc5b-6fd7af95d301"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"test['load'] = scaler.transform(test)\n",
|
|
"test.head(5)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"id": "x0n6jqxOQ41Z"
|
|
},
|
|
"source": [
|
|
"### Membuat data dengan langkah waktu\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"id": "fdmxTZtOQ8xs"
|
|
},
|
|
"source": [
|
|
"Untuk SVR kami, kami mengubah data input menjadi bentuk `[batch, timesteps]`. Jadi, kami mengubah bentuk `train_data` dan `test_data` yang ada sehingga terdapat dimensi baru yang mengacu pada timesteps. Untuk contoh kami, kami mengambil `timesteps = 5`. Jadi, input ke model adalah data untuk 4 timestep pertama, dan outputnya akan menjadi data untuk timestep ke-5.\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"id": "Rpju-Sc2HFm0"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Converting to numpy arrays\n",
|
|
"\n",
|
|
"train_data = train.values\n",
|
|
"test_data = test.values"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Selecting the timesteps\n",
|
|
"\n",
|
|
"timesteps=None"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"colab": {
|
|
"base_uri": "https://localhost:8080/"
|
|
},
|
|
"id": "O-JrsrsVJhUQ",
|
|
"outputId": "c90dbe71-bacc-4ec4-b452-f82fe5aefaef"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Converting data to 2D tensor\n",
|
|
"\n",
|
|
"train_data_timesteps=None"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"colab": {
|
|
"base_uri": "https://localhost:8080/"
|
|
},
|
|
"id": "exJD8AI7KE4g",
|
|
"outputId": "ce90260c-f327-427d-80f2-77307b5a6318"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Converting test data to 2D tensor\n",
|
|
"\n",
|
|
"test_data_timesteps=None"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"id": "2u0R2sIsLuq5"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"x_train, y_train = None\n",
|
|
"x_test, y_test = None\n",
|
|
"\n",
|
|
"print(x_train.shape, y_train.shape)\n",
|
|
"print(x_test.shape, y_test.shape)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"id": "8wIPOtAGLZlh"
|
|
},
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"id": "EhA403BEPEiD"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Create model using RBF kernel\n",
|
|
"\n",
|
|
"model = None"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"colab": {
|
|
"base_uri": "https://localhost:8080/"
|
|
},
|
|
"id": "GS0UA3csMbqp",
|
|
"outputId": "d86b6f05-5742-4c1d-c2db-c40510bd4f0d"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Fit model on training data"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"id": "Rz_x8S3UrlcF"
|
|
},
|
|
"source": [
|
|
"### Membuat prediksi model\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"colab": {
|
|
"base_uri": "https://localhost:8080/"
|
|
},
|
|
"id": "XR0gnt3MnuYS",
|
|
"outputId": "157e40ab-9a23-4b66-a885-0d52a24b2364"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Making predictions\n",
|
|
"\n",
|
|
"y_train_pred = None\n",
|
|
"y_test_pred = None"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"id": "_2epncg-SGzr"
|
|
},
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Scaling the predictions\n",
|
|
"\n",
|
|
"y_train_pred = scaler.inverse_transform(y_train_pred)\n",
|
|
"y_test_pred = scaler.inverse_transform(y_test_pred)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"colab": {
|
|
"base_uri": "https://localhost:8080/"
|
|
},
|
|
"id": "xmm_YLXhq7gV",
|
|
"outputId": "18392f64-4029-49ac-c71a-a4e2411152a1"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Scaling the original values\n",
|
|
"\n",
|
|
"y_train = scaler.inverse_transform(y_train)\n",
|
|
"y_test = scaler.inverse_transform(y_test)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"colab": {
|
|
"base_uri": "https://localhost:8080/"
|
|
},
|
|
"id": "u3LBj93coHEi",
|
|
"outputId": "d4fd49e8-8c6e-4bb0-8ef9-ca0b26d725b4"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Extract the timesteps for x-axis\n",
|
|
"\n",
|
|
"train_timestamps = None\n",
|
|
"test_timestamps = None"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"plt.figure(figsize=(25,6))\n",
|
|
"# plot original output\n",
|
|
"# plot predicted output\n",
|
|
"plt.legend(['Actual','Predicted'])\n",
|
|
"plt.xlabel('Timestamp')\n",
|
|
"plt.title(\"Training data prediction\")\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"colab": {
|
|
"base_uri": "https://localhost:8080/"
|
|
},
|
|
"id": "LnhzcnYtXHCm",
|
|
"outputId": "f5f0d711-f18b-4788-ad21-d4470ea2c02b"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"print('MAPE for training data: ', mape(y_train_pred, y_train)*100, '%')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"colab": {
|
|
"base_uri": "https://localhost:8080/",
|
|
"height": 225
|
|
},
|
|
"id": "53Q02FoqQH4V",
|
|
"outputId": "53e2d59b-5075-4765-ad9e-aed56c966583"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"plt.figure(figsize=(10,3))\n",
|
|
"# plot original output\n",
|
|
"# plot predicted output\n",
|
|
"plt.legend(['Actual','Predicted'])\n",
|
|
"plt.xlabel('Timestamp')\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"colab": {
|
|
"base_uri": "https://localhost:8080/"
|
|
},
|
|
"id": "clOAUH-SXCJG",
|
|
"outputId": "a3aa85ff-126a-4a4a-cd9e-90b9cc465ef5"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"print('MAPE for testing data: ', mape(y_test_pred, y_test)*100, '%')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"id": "DHlKvVCId5ue"
|
|
},
|
|
"source": [
|
|
"## Prediksi dataset lengkap\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"colab": {
|
|
"base_uri": "https://localhost:8080/"
|
|
},
|
|
"id": "cOFJ45vreO0N",
|
|
"outputId": "35628e33-ecf9-4966-8036-f7ea86db6f16"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Extracting load values as numpy array\n",
|
|
"data = None\n",
|
|
"\n",
|
|
"# Scaling\n",
|
|
"data = None\n",
|
|
"\n",
|
|
"# Transforming to 2D tensor as per model input requirement\n",
|
|
"data_timesteps=None\n",
|
|
"\n",
|
|
"# Selecting inputs and outputs from data\n",
|
|
"X, Y = None, None"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"id": "ESSAdQgwexIi"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Make model predictions\n",
|
|
"\n",
|
|
"# Inverse scale and reshape\n",
|
|
"Y_pred = None\n",
|
|
"Y = None"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"colab": {
|
|
"base_uri": "https://localhost:8080/",
|
|
"height": 328
|
|
},
|
|
"id": "M_qhihN0RVVX",
|
|
"outputId": "a89cb23e-1d35-437f-9d63-8b8907e12f80"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"plt.figure(figsize=(30,8))\n",
|
|
"# plot original output\n",
|
|
"# plot predicted output\n",
|
|
"plt.legend(['Actual','Predicted'])\n",
|
|
"plt.xlabel('Timestamp')\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"colab": {
|
|
"base_uri": "https://localhost:8080/"
|
|
},
|
|
"id": "AcN7pMYXVGTK",
|
|
"outputId": "7e1c2161-47ce-496c-9d86-7ad9ae0df770"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"print('MAPE: ', mape(Y_pred, Y)*100, '%')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"\n---\n\n**Penafian**: \nDokumen ini telah diterjemahkan menggunakan layanan penerjemahan AI [Co-op Translator](https://github.com/Azure/co-op-translator). Meskipun kami berupaya untuk memberikan hasil yang akurat, harap diperhatikan bahwa terjemahan otomatis mungkin mengandung kesalahan atau ketidakakuratan. Dokumen asli dalam bahasa aslinya harus dianggap sebagai sumber yang berwenang. Untuk informasi yang bersifat kritis, disarankan menggunakan jasa penerjemahan manusia profesional. Kami tidak bertanggung jawab atas kesalahpahaman atau penafsiran yang keliru yang timbul dari penggunaan terjemahan ini.\n"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"accelerator": "GPU",
|
|
"colab": {
|
|
"collapsed_sections": [],
|
|
"name": "Recurrent_Neural_Networks.ipynb",
|
|
"provenance": []
|
|
},
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.7.1"
|
|
},
|
|
"coopTranslator": {
|
|
"original_hash": "e86ce102239a14c44585623b9b924a74",
|
|
"translation_date": "2025-09-04T07:41:35+00:00",
|
|
"source_file": "7-TimeSeries/3-SVR/working/notebook.ipynb",
|
|
"language_code": "id"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 1
|
|
} |