You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ML-For-Beginners/translations/id/6-NLP/3-Translation-Sentiment/solution/notebook.ipynb

100 lines
3.0 KiB

{
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": 3
},
"orig_nbformat": 4,
"coopTranslator": {
"original_hash": "27de2abc0235ebd22080fc8f1107454d",
"translation_date": "2025-09-04T09:30:11+00:00",
"source_file": "6-NLP/3-Translation-Sentiment/solution/notebook.ipynb",
"language_code": "id"
}
},
"nbformat": 4,
"nbformat_minor": 2,
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from textblob import TextBlob\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# You should download the book text, clean it, and import it here\n",
"with open(\"pride.txt\", encoding=\"utf8\") as f:\n",
" file_contents = f.read()\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"book_pride = TextBlob(file_contents)\n",
"positive_sentiment_sentences = []\n",
"negative_sentiment_sentences = []"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"for sentence in book_pride.sentences:\n",
" if sentence.sentiment.polarity == 1:\n",
" positive_sentiment_sentences.append(sentence)\n",
" if sentence.sentiment.polarity == -1:\n",
" negative_sentiment_sentences.append(sentence)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(\"The \" + str(len(positive_sentiment_sentences)) + \" most positive sentences:\")\n",
"for sentence in positive_sentiment_sentences:\n",
" print(\"+ \" + str(sentence.replace(\"\\n\", \"\").replace(\" \", \" \")))\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(\"The \" + str(len(negative_sentiment_sentences)) + \" most negative sentences:\")\n",
"for sentence in negative_sentiment_sentences:\n",
" print(\"- \" + str(sentence.replace(\"\\n\", \"\").replace(\" \", \" \")))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n---\n\n**Penafian**: \nDokumen ini telah diterjemahkan menggunakan layanan penerjemahan AI [Co-op Translator](https://github.com/Azure/co-op-translator). Meskipun kami berupaya untuk memberikan hasil yang akurat, harap diperhatikan bahwa terjemahan otomatis mungkin mengandung kesalahan atau ketidakakuratan. Dokumen asli dalam bahasa aslinya harus dianggap sebagai sumber yang berwenang. Untuk informasi yang bersifat kritis, disarankan menggunakan jasa penerjemahan manusia profesional. Kami tidak bertanggung jawab atas kesalahpahaman atau penafsiran yang keliru yang timbul dari penggunaan terjemahan ini.\n"
]
}
]
}