|
|
<!--
|
|
|
CO_OP_TRANSLATOR_METADATA:
|
|
|
{
|
|
|
"original_hash": "1a6e9e46b34a2e559fbbfc1f95397c7b",
|
|
|
"translation_date": "2025-09-05T10:26:26+00:00",
|
|
|
"source_file": "4-Classification/2-Classifiers-1/README.md",
|
|
|
"language_code": "hi"
|
|
|
}
|
|
|
-->
|
|
|
# व्यंजन वर्गीकरणकर्ता 1
|
|
|
|
|
|
इस पाठ में, आप पिछले पाठ से सहेजे गए डेटा सेट का उपयोग करेंगे, जिसमें संतुलित और साफ डेटा है, जो विभिन्न व्यंजनों के बारे में है।
|
|
|
|
|
|
आप इस डेटा सेट का उपयोग विभिन्न वर्गीकरणकर्ताओं के साथ करेंगे ताकि _सामग्री के समूह के आधार पर किसी राष्ट्रीय व्यंजन की भविष्यवाणी की जा सके_। ऐसा करते समय, आप यह जानेंगे कि वर्गीकरण कार्यों के लिए एल्गोरिदम का उपयोग कैसे किया जा सकता है।
|
|
|
|
|
|
## [पाठ-पूर्व क्विज़](https://ff-quizzes.netlify.app/en/ml/)
|
|
|
# तैयारी
|
|
|
|
|
|
मान लें कि आपने [पाठ 1](../1-Introduction/README.md) पूरा कर लिया है, सुनिश्चित करें कि _cleaned_cuisines.csv_ फ़ाइल इन चार पाठों के लिए रूट `/data` फ़ोल्डर में मौजूद है।
|
|
|
|
|
|
## अभ्यास - राष्ट्रीय व्यंजन की भविष्यवाणी करें
|
|
|
|
|
|
1. इस पाठ के _notebook.ipynb_ फ़ोल्डर में काम करते हुए, उस फ़ाइल को Pandas लाइब्रेरी के साथ आयात करें:
|
|
|
|
|
|
```python
|
|
|
import pandas as pd
|
|
|
cuisines_df = pd.read_csv("../data/cleaned_cuisines.csv")
|
|
|
cuisines_df.head()
|
|
|
```
|
|
|
|
|
|
डेटा इस प्रकार दिखता है:
|
|
|
|
|
|
| | Unnamed: 0 | cuisine | almond | angelica | anise | anise_seed | apple | apple_brandy | apricot | armagnac | ... | whiskey | white_bread | white_wine | whole_grain_wheat_flour | wine | wood | yam | yeast | yogurt | zucchini |
|
|
|
| --- | ---------- | ------- | ------ | -------- | ----- | ---------- | ----- | ------------ | ------- | -------- | --- | ------- | ----------- | ---------- | ----------------------- | ---- | ---- | --- | ----- | ------ | -------- |
|
|
|
| 0 | 0 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|
|
|
| 1 | 1 | indian | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|
|
|
| 2 | 2 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|
|
|
| 3 | 3 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|
|
|
| 4 | 4 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
|
|
|
|
|
|
|
|
|
1. अब, कुछ और लाइब्रेरी आयात करें:
|
|
|
|
|
|
```python
|
|
|
from sklearn.linear_model import LogisticRegression
|
|
|
from sklearn.model_selection import train_test_split, cross_val_score
|
|
|
from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report, precision_recall_curve
|
|
|
from sklearn.svm import SVC
|
|
|
import numpy as np
|
|
|
```
|
|
|
|
|
|
1. X और y निर्देशांक को प्रशिक्षण के लिए दो डेटा फ्रेम में विभाजित करें। `cuisine` लेबल्स डेटा फ्रेम हो सकता है:
|
|
|
|
|
|
```python
|
|
|
cuisines_label_df = cuisines_df['cuisine']
|
|
|
cuisines_label_df.head()
|
|
|
```
|
|
|
|
|
|
यह इस प्रकार दिखेगा:
|
|
|
|
|
|
```output
|
|
|
0 indian
|
|
|
1 indian
|
|
|
2 indian
|
|
|
3 indian
|
|
|
4 indian
|
|
|
Name: cuisine, dtype: object
|
|
|
```
|
|
|
|
|
|
1. उस `Unnamed: 0` कॉलम और `cuisine` कॉलम को हटा दें, `drop()` का उपयोग करके। बाकी डेटा को ट्रेनिंग फीचर्स के रूप में सहेजें:
|
|
|
|
|
|
```python
|
|
|
cuisines_feature_df = cuisines_df.drop(['Unnamed: 0', 'cuisine'], axis=1)
|
|
|
cuisines_feature_df.head()
|
|
|
```
|
|
|
|
|
|
आपके फीचर्स इस प्रकार दिखते हैं:
|
|
|
|
|
|
| | almond | angelica | anise | anise_seed | apple | apple_brandy | apricot | armagnac | artemisia | artichoke | ... | whiskey | white_bread | white_wine | whole_grain_wheat_flour | wine | wood | yam | yeast | yogurt | zucchini |
|
|
|
| ---: | -----: | -------: | ----: | ---------: | ----: | -----------: | ------: | -------: | --------: | --------: | ---: | ------: | ----------: | ---------: | ----------------------: | ---: | ---: | ---: | ----: | -----: | -------: |
|
|
|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|
|
|
| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|
|
|
| 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|
|
|
| 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|
|
|
| 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
|
|
|
|
|
|
अब आप अपने मॉडल को प्रशिक्षित करने के लिए तैयार हैं!
|
|
|
|
|
|
## अपने वर्गीकरणकर्ता का चयन करना
|
|
|
|
|
|
अब जब आपका डेटा साफ और प्रशिक्षण के लिए तैयार है, तो आपको यह तय करना होगा कि इस काम के लिए कौन सा एल्गोरिदम उपयोग करना है।
|
|
|
|
|
|
Scikit-learn वर्गीकरण को सुपरवाइज्ड लर्निंग के तहत वर्गीकृत करता है, और इस श्रेणी में आपको वर्गीकरण के कई तरीके मिलेंगे। [विविधता](https://scikit-learn.org/stable/supervised_learning.html) पहली नज़र में काफी भ्रमित करने वाली लग सकती है। निम्नलिखित विधियां सभी वर्गीकरण तकनीकों को शामिल करती हैं:
|
|
|
|
|
|
- रैखिक मॉडल
|
|
|
- सपोर्ट वेक्टर मशीन
|
|
|
- स्टोकेस्टिक ग्रेडिएंट डिसेंट
|
|
|
- निकटतम पड़ोसी
|
|
|
- गॉसियन प्रक्रियाएं
|
|
|
- निर्णय वृक्ष
|
|
|
- समुच्चय विधियां (वोटिंग क्लासिफायर)
|
|
|
- मल्टीक्लास और मल्टीआउटपुट एल्गोरिदम (मल्टीक्लास और मल्टीलेबल वर्गीकरण, मल्टीक्लास-मल्टीआउटपुट वर्गीकरण)
|
|
|
|
|
|
> आप [न्यूरल नेटवर्क का उपयोग करके डेटा को वर्गीकृत](https://scikit-learn.org/stable/modules/neural_networks_supervised.html#classification) भी कर सकते हैं, लेकिन यह इस पाठ के दायरे से बाहर है।
|
|
|
|
|
|
### कौन सा वर्गीकरणकर्ता चुनें?
|
|
|
|
|
|
तो, आपको कौन सा वर्गीकरणकर्ता चुनना चाहिए? अक्सर, कई विकल्पों को आजमाना और अच्छे परिणाम की तलाश करना एक तरीका होता है। Scikit-learn एक [साइड-बाय-साइड तुलना](https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html) प्रदान करता है, जिसमें KNeighbors, SVC दो तरीके, GaussianProcessClassifier, DecisionTreeClassifier, RandomForestClassifier, MLPClassifier, AdaBoostClassifier, GaussianNB और QuadraticDiscriminationAnalysis की तुलना की जाती है, और परिणामों को विज़ुअलाइज़ किया जाता है:
|
|
|
|
|
|

|
|
|
> Scikit-learn के दस्तावेज़ों पर उत्पन्न प्लॉट्स
|
|
|
|
|
|
> AutoML इस समस्या को आसानी से हल करता है, इन तुलनाओं को क्लाउड में चलाकर, जिससे आप अपने डेटा के लिए सबसे अच्छा एल्गोरिदम चुन सकते हैं। इसे [यहां आज़माएं](https://docs.microsoft.com/learn/modules/automate-model-selection-with-azure-automl/?WT.mc_id=academic-77952-leestott)
|
|
|
|
|
|
### एक बेहतर दृष्टिकोण
|
|
|
|
|
|
बेतरतीब ढंग से अनुमान लगाने से बेहतर तरीका यह है कि इस डाउनलोड करने योग्य [ML चीट शीट](https://docs.microsoft.com/azure/machine-learning/algorithm-cheat-sheet?WT.mc_id=academic-77952-leestott) के विचारों का पालन करें। यहां, हम पाते हैं कि हमारे मल्टीक्लास समस्या के लिए हमारे पास कुछ विकल्प हैं:
|
|
|
|
|
|

|
|
|
> Microsoft के एल्गोरिदम चीट शीट का एक भाग, जिसमें मल्टीक्लास वर्गीकरण विकल्पों का विवरण है
|
|
|
|
|
|
✅ इस चीट शीट को डाउनलोड करें, प्रिंट करें, और इसे अपनी दीवार पर टांग दें!
|
|
|
|
|
|
### तर्क
|
|
|
|
|
|
आइए देखें कि हम अपने पास मौजूद बाधाओं को ध्यान में रखते हुए विभिन्न दृष्टिकोणों के माध्यम से तर्क कर सकते हैं:
|
|
|
|
|
|
- **न्यूरल नेटवर्क बहुत भारी हैं**। हमारे साफ लेकिन न्यूनतम डेटा सेट को देखते हुए, और तथ्य यह है कि हम प्रशिक्षण को स्थानीय रूप से नोटबुक्स के माध्यम से चला रहे हैं, न्यूरल नेटवर्क इस कार्य के लिए बहुत भारी हैं।
|
|
|
- **कोई दो-क्लास वर्गीकरणकर्ता नहीं**। हम दो-क्लास वर्गीकरणकर्ता का उपयोग नहीं करते हैं, इसलिए यह विकल्प बाहर हो जाता है।
|
|
|
- **निर्णय वृक्ष या लॉजिस्टिक रिग्रेशन काम कर सकते हैं**। निर्णय वृक्ष काम कर सकता है, या मल्टीक्लास डेटा के लिए लॉजिस्टिक रिग्रेशन।
|
|
|
- **मल्टीक्लास बूस्टेड निर्णय वृक्ष अलग समस्या हल करते हैं**। मल्टीक्लास बूस्टेड निर्णय वृक्ष गैर-पैरामीट्रिक कार्यों के लिए सबसे उपयुक्त हैं, जैसे रैंकिंग बनाने के लिए डिज़ाइन किए गए कार्य, इसलिए यह हमारे लिए उपयोगी नहीं है।
|
|
|
|
|
|
### Scikit-learn का उपयोग करना
|
|
|
|
|
|
हम अपने डेटा का विश्लेषण करने के लिए Scikit-learn का उपयोग करेंगे। हालांकि, Scikit-learn में लॉजिस्टिक रिग्रेशन का उपयोग करने के कई तरीके हैं। [पास करने के लिए पैरामीटर](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html?highlight=logistic%20regressio#sklearn.linear_model.LogisticRegression) पर एक नज़र डालें।
|
|
|
|
|
|
मूल रूप से दो महत्वपूर्ण पैरामीटर हैं - `multi_class` और `solver` - जिन्हें हमें निर्दिष्ट करना होगा, जब हम Scikit-learn से लॉजिस्टिक रिग्रेशन करने के लिए कहते हैं। `multi_class` मान एक निश्चित व्यवहार लागू करता है। solver का मान यह निर्धारित करता है कि कौन सा एल्गोरिदम उपयोग करना है। सभी solver को सभी `multi_class` मानों के साथ जोड़ा नहीं जा सकता।
|
|
|
|
|
|
दस्तावेज़ों के अनुसार, मल्टीक्लास मामले में, प्रशिक्षण एल्गोरिदम:
|
|
|
|
|
|
- **one-vs-rest (OvR) योजना का उपयोग करता है**, यदि `multi_class` विकल्प `ovr` पर सेट है।
|
|
|
- **क्रॉस-एंट्रॉपी लॉस का उपयोग करता है**, यदि `multi_class` विकल्प `multinomial` पर सेट है। (वर्तमान में `multinomial` विकल्प केवल ‘lbfgs’, ‘sag’, ‘saga’ और ‘newton-cg’ solver द्वारा समर्थित है।)
|
|
|
|
|
|
> 🎓 यहां 'scheme' 'ovr' (one-vs-rest) या 'multinomial' हो सकता है। चूंकि लॉजिस्टिक रिग्रेशन वास्तव में बाइनरी वर्गीकरण का समर्थन करने के लिए डिज़ाइन किया गया है, ये योजनाएं इसे मल्टीक्लास वर्गीकरण कार्यों को बेहतर तरीके से संभालने की अनुमति देती हैं। [स्रोत](https://machinelearningmastery.com/one-vs-rest-and-one-vs-one-for-multi-class-classification/)
|
|
|
|
|
|
> 🎓 'solver' को "अनुकूलन समस्या में उपयोग करने के लिए एल्गोरिदम" के रूप में परिभाषित किया गया है। [स्रोत](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html?highlight=logistic%20regressio#sklearn.linear_model.LogisticRegression).
|
|
|
|
|
|
Scikit-learn इस तालिका की पेशकश करता है ताकि यह समझाया जा सके कि solver विभिन्न प्रकार की डेटा संरचनाओं द्वारा प्रस्तुत विभिन्न चुनौतियों को कैसे संभालते हैं:
|
|
|
|
|
|

|
|
|
|
|
|
## अभ्यास - डेटा को विभाजित करें
|
|
|
|
|
|
हम अपने पहले प्रशिक्षण परीक्षण के लिए लॉजिस्टिक रिग्रेशन पर ध्यान केंद्रित कर सकते हैं क्योंकि आपने हाल ही में पिछले पाठ में इसके बारे में सीखा था।
|
|
|
अपने डेटा को प्रशिक्षण और परीक्षण समूहों में विभाजित करें, `train_test_split()` को कॉल करके:
|
|
|
|
|
|
```python
|
|
|
X_train, X_test, y_train, y_test = train_test_split(cuisines_feature_df, cuisines_label_df, test_size=0.3)
|
|
|
```
|
|
|
|
|
|
## अभ्यास - लॉजिस्टिक रिग्रेशन लागू करें
|
|
|
|
|
|
चूंकि आप मल्टीक्लास मामले का उपयोग कर रहे हैं, आपको यह चुनना होगा कि कौन सा _scheme_ उपयोग करना है और कौन सा _solver_ सेट करना है। मल्टीक्लास सेटिंग और **liblinear** solver के साथ LogisticRegression का उपयोग करें।
|
|
|
|
|
|
1. एक लॉजिस्टिक रिग्रेशन बनाएं जिसमें multi_class `ovr` पर सेट हो और solver `liblinear` पर सेट हो:
|
|
|
|
|
|
```python
|
|
|
lr = LogisticRegression(multi_class='ovr',solver='liblinear')
|
|
|
model = lr.fit(X_train, np.ravel(y_train))
|
|
|
|
|
|
accuracy = model.score(X_test, y_test)
|
|
|
print ("Accuracy is {}".format(accuracy))
|
|
|
```
|
|
|
|
|
|
✅ एक अलग solver जैसे `lbfgs` आज़माएं, जिसे अक्सर डिफ़ॉल्ट रूप में सेट किया जाता है।
|
|
|
> ध्यान दें, जब आवश्यक हो, तो अपने डेटा को समतल करने के लिए Pandas [`ravel`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.ravel.html) फ़ंक्शन का उपयोग करें।
|
|
|
सटीकता **80%** से अधिक है!
|
|
|
|
|
|
1. आप इस मॉडल को एक डेटा की पंक्ति (#50) का परीक्षण करके देख सकते हैं:
|
|
|
|
|
|
```python
|
|
|
print(f'ingredients: {X_test.iloc[50][X_test.iloc[50]!=0].keys()}')
|
|
|
print(f'cuisine: {y_test.iloc[50]}')
|
|
|
```
|
|
|
|
|
|
परिणाम प्रिंट होता है:
|
|
|
|
|
|
```output
|
|
|
ingredients: Index(['cilantro', 'onion', 'pea', 'potato', 'tomato', 'vegetable_oil'], dtype='object')
|
|
|
cuisine: indian
|
|
|
```
|
|
|
|
|
|
✅ एक अलग पंक्ति संख्या आज़माएं और परिणाम जांचें।
|
|
|
|
|
|
1. गहराई में जाएं, आप इस भविष्यवाणी की सटीकता की जांच कर सकते हैं:
|
|
|
|
|
|
```python
|
|
|
test= X_test.iloc[50].values.reshape(-1, 1).T
|
|
|
proba = model.predict_proba(test)
|
|
|
classes = model.classes_
|
|
|
resultdf = pd.DataFrame(data=proba, columns=classes)
|
|
|
|
|
|
topPrediction = resultdf.T.sort_values(by=[0], ascending = [False])
|
|
|
topPrediction.head()
|
|
|
```
|
|
|
|
|
|
परिणाम प्रिंट होता है - भारतीय व्यंजन इसका सबसे अच्छा अनुमान है, अच्छी संभावना के साथ:
|
|
|
|
|
|
| | 0 |
|
|
|
| -------: | -------: |
|
|
|
| indian | 0.715851 |
|
|
|
| chinese | 0.229475 |
|
|
|
| japanese | 0.029763 |
|
|
|
| korean | 0.017277 |
|
|
|
| thai | 0.007634 |
|
|
|
|
|
|
✅ क्या आप समझा सकते हैं कि मॉडल को क्यों पूरा यकीन है कि यह भारतीय व्यंजन है?
|
|
|
|
|
|
1. अधिक विवरण प्राप्त करें, जैसा आपने रिग्रेशन पाठों में किया था, एक वर्गीकरण रिपोर्ट प्रिंट करके:
|
|
|
|
|
|
```python
|
|
|
y_pred = model.predict(X_test)
|
|
|
print(classification_report(y_test,y_pred))
|
|
|
```
|
|
|
|
|
|
| | precision | recall | f1-score | support |
|
|
|
| ------------ | --------- | ------ | -------- | ------- |
|
|
|
| chinese | 0.73 | 0.71 | 0.72 | 229 |
|
|
|
| indian | 0.91 | 0.93 | 0.92 | 254 |
|
|
|
| japanese | 0.70 | 0.75 | 0.72 | 220 |
|
|
|
| korean | 0.86 | 0.76 | 0.81 | 242 |
|
|
|
| thai | 0.79 | 0.85 | 0.82 | 254 |
|
|
|
| accuracy | 0.80 | 1199 | | |
|
|
|
| macro avg | 0.80 | 0.80 | 0.80 | 1199 |
|
|
|
| weighted avg | 0.80 | 0.80 | 0.80 | 1199 |
|
|
|
|
|
|
## 🚀चुनौती
|
|
|
|
|
|
इस पाठ में, आपने अपने साफ किए गए डेटा का उपयोग करके एक मशीन लर्निंग मॉडल बनाया जो सामग्री की एक श्रृंखला के आधार पर राष्ट्रीय व्यंजन की भविष्यवाणी कर सकता है। Scikit-learn द्वारा डेटा वर्गीकृत करने के लिए प्रदान किए गए कई विकल्पों को पढ़ने के लिए कुछ समय निकालें। 'solver' की अवधारणा में गहराई से जाएं ताकि समझ सकें कि पर्दे के पीछे क्या होता है।
|
|
|
|
|
|
## [पाठ के बाद क्विज़](https://ff-quizzes.netlify.app/en/ml/)
|
|
|
|
|
|
## समीक्षा और स्व-अध्ययन
|
|
|
|
|
|
लॉजिस्टिक रिग्रेशन के पीछे गणित को [इस पाठ](https://people.eecs.berkeley.edu/~russell/classes/cs194/f11/lectures/CS194%20Fall%202011%20Lecture%2006.pdf) में थोड़ा और गहराई से समझें।
|
|
|
## असाइनमेंट
|
|
|
|
|
|
[सॉल्वर का अध्ययन करें](assignment.md)
|
|
|
|
|
|
---
|
|
|
|
|
|
**अस्वीकरण**:
|
|
|
यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयासरत हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं। |