@ -244,7 +244,7 @@ Hint: Try to scale your data. There's commented code in the notebook that adds s
Take a look at a K-Means Simulator [such as this one](https://user.ceng.metu.edu.tr/~akifakkus/courses/ceng574/k-means/). You can use this tool to visualize sample data points and determine its centroids. You can edit the data's randomness, numbers of clusters and numbers of centroids. Does this help you get an idea of how the data can be grouped?
Also, take a look at [this handout on k-means](https://stanford.edu/~cpiech/cs221/handouts/kmeans.html) from Stanford.
Also, take a look at [this handout on K-Means](https://stanford.edu/~cpiech/cs221/handouts/kmeans.html) from Stanford.
@ -244,7 +244,7 @@ Suggerimento: provare a ridimensionare i dati. C'è un codice commentato nel not
Dare un'occhiata a un simulatore di K-Means [tipo questo](https://user.ceng.metu.edu.tr/~akifakkus/courses/ceng574/k-means/). È possibile utilizzare questo strumento per visualizzare i punti dati di esempio e determinarne i centroidi. Questo aiuta a farsi un'idea di come i dati possono essere raggruppati?
Inoltre, dare un'occhiata a [questa dispensa sui k-means](https://stanford.edu/~cpiech/cs221/handouts/kmeans.html) di Stanford.
Inoltre, dare un'occhiata a [questa dispensa sui K-Means](https://stanford.edu/~cpiech/cs221/handouts/kmeans.html) di Stanford.
@ -244,7 +244,7 @@ Variance는 "the average of the squared differences from the Mean."으로 정의
[such as this one](https://user.ceng.metu.edu.tr/~akifakkus/courses/ceng574/k-means/)같은 K-Means 시뮬레이터를 찾아봅니다. 이 도구로 샘플 데이터 포인트를 시각화하고 무게 중심을 결정할 수 있습니다. 데이터의 랜덤성, 클러스터 수와 무게 중심 수를 고칠 수 있습니다. 데이터를 그룹으로 묶기 위한 아이디어를 얻는 게 도움이 되나요?
또한, Stanford의 [this handout on k-means](https://stanford.edu/~cpiech/cs221/handouts/kmeans.html)을 찾아봅니다.
또한, Stanford 의 [this handout on K-Means](https://stanford.edu/~cpiech/cs221/handouts/kmeans.html)을 찾아봅니다.
@ -8,15 +8,17 @@ Nigeria's diverse audience has diverse musical tastes. Using data scraped from S

Photo by <ahref="https://unsplash.com/@marcelalaskoski?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Marcela Laskoski</a> on <ahref="https://unsplash.com/s/photos/nigerian-music?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Unsplash</a>
> Photo by <ahref="https://unsplash.com/@marcelalaskoski?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Marcela Laskoski</a> on <ahref="https://unsplash.com/s/photos/nigerian-music?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Unsplash</a>
In this series of lessons, you will discover new ways to analyze data using clustering techniques. Clustering is particularly useful when your dataset lacks labels. If it does have labels, then classification techniques such as those you learned in previous lessons might be more useful. But in cases where you are looking to group unlabelled data, clustering is a great way to discover patterns.
> There are useful low-code tools that can help you learn about working with clustering models. Try [Azure ML for this task](https://docs.microsoft.com/learn/modules/create-clustering-model-azure-machine-learning-designer/?WT.mc_id=academic-15963-cxa)
## Lessons
1. [Introduction to clustering](1-Visualize/README.md)
2. [K-Means clustering](2-K-Means/README.md)
## Credits
These lessons were written with 🎶 by [Jen Looper](https://www.twitter.com/jenlooper) with helpful reviews by [Rishit Dagli](https://rishit_dagli) and [Muhammad Sakib Khan Inan](https://twitter.com/Sakibinan).
@ -8,7 +8,7 @@ Il pubblico eterogeneo della Nigeria ha gusti musicali diversi. Usando i dati re

Foto di <ahref="https://unsplash.com/@marcelalaskoski?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Marcela Laskoski</a> su <ahref="https://unsplash.com/s/photos/nigerian-music?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Unsplash</a>
> Foto di <ahref="https://unsplash.com/@marcelalaskoski?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Marcela Laskoski</a> su <ahref="https://unsplash.com/s/photos/nigerian-music?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Unsplash</a>
In questa serie di lezioni si scopriranno nuovi modi per analizzare i dati utilizzando tecniche di clustering. Il clustering è particolarmente utile quando l'insieme di dati non ha etichette. Se ha etichette, le tecniche di classificazione come quelle apprese nelle lezioni precedenti potrebbero essere più utili. Ma nei casi in cui si sta cercando di raggruppare dati senza etichetta, il clustering è un ottimo modo per scoprire i modelli.
@ -8,7 +8,7 @@ Clustering은 서로 비슷한 오브젝트를 찾고 clusters라고 불린 그

Photo by <ahref="https://unsplash.com/@marcelalaskoski?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Marcela Laskoski</a> on <ahref="https://unsplash.com/s/photos/nigerian-music?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Unsplash</a>
> Photo by <ahref="https://unsplash.com/@marcelalaskoski?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Marcela Laskoski</a> on <ahref="https://unsplash.com/s/photos/nigerian-music?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Unsplash</a>
이 강의의 시리즈에서, clustering 기술로 데이터를 분석하는 새로운 방식을 찾아볼 예정입니다. Clustering 은 데이터셋에 라벨이 없으면 더욱 더 유용합니다. 만약 라벨이 있다면, 이전 강의에서 배운대로 classification 기술이 더 유용할 수 있습니다. 그러나 라벨링되지 않은 데이터를 그룹으로 묶으려면, clustering 은 패턴을 발견하기 위한 좋은 방식입니다.
Фото <ahref="https://unsplash.com/@marcelalaskoski?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText"> Марсела Ласкоски </a> на <ahref="https://unsplash.com/s/photos/nigerian-music?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText"> Unsplash </a>
> Фото <ahref="https://unsplash.com/@marcelalaskoski?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText"> Марсела Ласкоски </a> на <ahref="https://unsplash.com/s/photos/nigerian-music?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText"> Unsplash </a>
В этой серии уроков вы откроете для себя новые способы анализа данных с помощью методов кластеризации. Кластеризация особенно полезна, когда в наборе данных отсутствуют метки. Если на нем есть ярлыки, тогда могут быть более полезными методы классификации, подобные тем, которые вы изучили на предыдущих уроках. Но в случаях, когда вы хотите сгруппировать немаркированные данные, кластеризация - отличный способ обнаружить закономерности.
> 这里有一些有用的低代码工具可以帮助您了解如何使用聚类模型。尝试 [Azure ML for this task](https://docs.microsoft.com/learn/modules/create-clustering-model-azure-machine-learning-designer/?WT.mc_id=academic-15963-cxa)