Ornella Altunyan 4 years ago
commit f0c4490404

@ -92,7 +92,7 @@ By ensuring that the content aligns with projects, the process is made more enga
| 21 | ⚡️ World Power Usage ⚡️ Time Series Forecasting with ARIMA ⚡️ | [Time Series](7-TimeSeries/README.md) | Time Series Forecasting with ARIMA | [lesson](7-TimeSeries/2-ARIMA/README.md) | Francesca | | 21 | ⚡️ World Power Usage ⚡️ Time Series Forecasting with ARIMA ⚡️ | [Time Series](7-TimeSeries/README.md) | Time Series Forecasting with ARIMA | [lesson](7-TimeSeries/2-ARIMA/README.md) | Francesca |
| 22 | Introduction to Reinforcement Learning | [Reinforcement Learning](8-Reinforcement/README.md) | tbd | [lesson]() | Dmitry | | 22 | Introduction to Reinforcement Learning | [Reinforcement Learning](8-Reinforcement/README.md) | tbd | [lesson]() | Dmitry |
| 23 | Help Peter avoid the Wolf! 🐺 | [Reinforcement Learning](8-Reinforcement/README.md) | tbd | [lesson]() | Dmitry | | 23 | Help Peter avoid the Wolf! 🐺 | [Reinforcement Learning](8-Reinforcement/README.md) | tbd | [lesson]() | Dmitry |
| 24 | Real-World ML Scenarios and Applications | ML in the Wild | Interesting and Revealing real-world applications of classical ML | [lesson](9-Real-World/1-Applications/README.md) | Team | | 24 | Real-World ML Scenarios and Applications | [ML in the Wild](9-Real-World/README.md) | Interesting and Revealing real-world applications of classical ML | [lesson](9-Real-World/1-Applications/README.md) | Team |
## Offline access ## Offline access
You can run this documentation offline by using [Docsify](https://docsify.js.org/#/). Fork this repo, [install Docsify](https://docsify.js.org/#/quickstart) on your local machine, and then in the root folder of this repo, type `docsify serve`. The website will be served on port 3000 on your localhost: `localhost:3000`. You can run this documentation offline by using [Docsify](https://docsify.js.org/#/). Fork this repo, [install Docsify](https://docsify.js.org/#/quickstart) on your local machine, and then in the root folder of this repo, type `docsify serve`. The website will be served on port 3000 on your localhost: `localhost:3000`.

Loading…
Cancel
Save