linking Chinese language assignments

pull/203/head
Jen Looper 3 years ago
parent c67123ad73
commit d07d80730d

@ -113,4 +113,4 @@ Alan Turing一个真正杰出的人[在2019年被公众投票选出](https
## 任务
[创建时间线](../assignment.md)
[创建时间线](assignment.zh-cn.md)

@ -89,11 +89,11 @@
**讨论**:重温一些例子,看看它们是否显示出不同的危害。
| | 分配 | 服务质量 | 刻板印象 | 诋毁 | 代表性过高或过低 |
| ----------------------- | :--------: | :----------------: | :----------: | :---------: | :----------------------------: |
| 自动招聘系统 | x | x | x | | x |
| 机器翻译 | | | | | |
| 照片加标签 | | | | | |
| | 分配 | 服务质量 | 刻板印象 | 诋毁 | 代表性过高或过低 |
| ------------ | :---: | :------: | :------: | :---: | :--------------: |
| 自动招聘系统 | x | x | x | | x |
| 机器翻译 | | | | | |
| 照片加标签 | | | | | |
## 检测不公平
@ -138,11 +138,11 @@
✅ 在以后关于聚类的课程中,你将看到如何在代码中构建这个“混淆矩阵”
| | 假阳性率 | 假阴性率 | 数量 |
| ---------- | ------------------- | ------------------- | ----- |
| 女性 | 0.37 | 0.27 | 54032 |
| 男性 | 0.31 | 0.35 | 28620 |
| 未列出性别 | 0.33 | 0.31 | 1266 |
| | 假阳性率 | 假阴性率 | 数量 |
| ---------- | -------- | -------- | ----- |
| 女性 | 0.37 | 0.27 | 54032 |
| 男性 | 0.31 | 0.35 | 28620 |
| 未列出性别 | 0.33 | 0.31 | 1266 |
这个表格告诉我们几件事。首先,我们注意到数据中的未列出性别的人相对较少。数据是有偏差的,所以你需要小心解释这些数字。
@ -211,4 +211,4 @@
## 任务
[探索Fairlearn](../assignment.md)
[探索Fairlearn](assignment.zh-cn.md)

@ -54,7 +54,7 @@
- **训练**。这部分数据集适合你的模型进行训练。这个集合构成了原始数据集的大部分。
- **测试**。测试数据集是一组独立的数据,通常从原始数据中收集,用于确认构建模型的性能。
- **验证**。验证集是一个较小的独立示例组,用于调整模型的超参数或架构,以改进模型。根据你的数据大小和你提出的问题,你可能不需要构建第三组(正如我们在[时间序列预测](../../7-TimeSeries/1-Introduction/README.md)中所述)。
- **验证**。验证集是一个较小的独立示例组,用于调整模型的超参数或架构,以改进模型。根据你的数据大小和你提出的问题,你可能不需要构建第三组(正如我们在[时间序列预测](../../../7-TimeSeries/1-Introduction/README.md)中所述)。
## 建立模型
@ -105,4 +105,4 @@
## 任务
[采访一名数据科学家](../assignment.md)
[采访一名数据科学家](assignment.zh-cn.md)

Loading…
Cancel
Save