minor changes to avoid warnings

pull/646/head
Carlotta Castelluccio 2 years ago
parent b18b26027a
commit ae407eb771

@ -176,7 +176,7 @@ The best way to perform this kind of analysis is plotting the data. We'll be usi
x="Item Size", y="Color", row='Variety', x="Item Size", y="Color", row='Variety',
kind="box", orient="h", kind="box", orient="h",
sharex=False, margin_titles=True, sharex=False, margin_titles=True,
height=1.5, aspect=4, palette=palette, height=1.8, aspect=4, palette=palette,
) )
g.set(xlabel="Item Size", ylabel="").set(xlim=(0,6)) g.set(xlabel="Item Size", ylabel="").set(xlim=(0,6))
g.set_titles(row_template="{row_name}") g.set_titles(row_template="{row_name}")
@ -193,8 +193,8 @@ You can visualize variables side-by-side with Seaborn plots.
```python ```python
palette = { palette = {
'0': 'orange', 0: 'orange',
'1': 'wheat' 1: 'wheat'
} }
sns.swarmplot(x="Color", y="ord__Item Size", data=encoded_pumpkins, palette=palette) sns.swarmplot(x="Color", y="ord__Item Size", data=encoded_pumpkins, palette=palette)
``` ```
@ -229,7 +229,6 @@ Building a model to find these binary classification is surprisingly straightfor
2. Now you can train your model, by calling `fit()` with your training data, and print out its result: 2. Now you can train your model, by calling `fit()` with your training data, and print out its result:
```python ```python
from sklearn.model_selection import train_test_split
from sklearn.metrics import f1_score, classification_report from sklearn.metrics import f1_score, classification_report
from sklearn.linear_model import LogisticRegression from sklearn.linear_model import LogisticRegression

File diff suppressed because one or more lines are too long
Loading…
Cancel
Save