Italian Translation - Chapter 1 - Final

pull/133/head
Roberto Pauletto 4 years ago
parent 42155e19c4
commit 9d6028f32c

@ -7,7 +7,7 @@
In questa lezione, si camminerà attraverso le principali pietre miliari nella storia di machine learning e dell'intelligenza artificiale. In questa lezione, si camminerà attraverso le principali pietre miliari nella storia di machine learning e dell'intelligenza artificiale.
La storia dell'intelligenza artificiale, AI, come campo è intrecciata con la storia di machine learning, poiché gli algoritmi e i progressi computazionali alla base di machine learning hanno contribuito allo sviluppo dell'intelligenza artificiale. È utile ricordare che, mentre questi campi come distinte aree di indagine hanno cominciato a cristallizzarsi negli anni '50, importanti [scoperte algoritmiche, statistiche, matematiche, computazionali e tecniche](https://wikipedia.org/wiki/Timeline_of_machine_learning) hanno preceduto e si sono sovrapposte a questa era. In effetti, le persone hanno riflettuto su queste domande per [centinaia di anni](https://wikipedia.org/wiki/History_of_artificial_intelligence): questo articolo discute le basi intellettuali storiche dell'idea di una "macchina pensante". La storia dell'intelligenza artificiale, AI, come campo è intrecciata con la storia di machine learning, poiché gli algoritmi e i progressi computazionali alla base di machine learning hanno contribuito allo sviluppo dell'intelligenza artificiale. È utile ricordare che, mentre questi campi come distinte aree di indagine hanno cominciato a cristallizzarsi negli anni '50, importanti [scoperte algoritmiche, statistiche, matematiche, computazionali e tecniche](https://wikipedia.org/wiki/Timeline_of_machine_learning) hanno preceduto e si sono sovrapposte a questa era. In effetti, le persone hanno riflettuto su queste domande per [centinaia di anni](https://wikipedia.org/wiki/History_of_artificial_intelligence); questo articolo discute le basi intellettuali storiche dell'idea di una "macchina pensante".
## Scoperte rilevanti ## Scoperte rilevanti
@ -69,7 +69,7 @@ Verso la metà degli anni '70, era diventato evidente che la complessità della
- I test di Turing furono messi in discussione attraverso, tra le altre idee, la "teoria della stanza cinese" che postulava che "la programmazione di un computer digitale può far sembrare che capisca il linguaggio ma non potrebbe produrre una vera comprensione". ([fonte](https://plato.stanford.edu/entries/chinese-room/)) - I test di Turing furono messi in discussione attraverso, tra le altre idee, la "teoria della stanza cinese" che postulava che "la programmazione di un computer digitale può far sembrare che capisca il linguaggio ma non potrebbe produrre una vera comprensione". ([fonte](https://plato.stanford.edu/entries/chinese-room/))
- L'etica dell'introduzione di intelligenze artificiali come la "terapeuta" ELIZA nella società è stata messa in discussione. - L'etica dell'introduzione di intelligenze artificiali come la "terapeuta" ELIZA nella società è stata messa in discussione.
Allo stesso tempo, iniziarono a formarsi varie scuole di pensiero sull'AI. È stata stabilita una dicotomia tra pratiche ["scruffy" contro "neat AI"](https://wikipedia.org/wiki/Neats_and_scruffies) ;. I laboratori _scruffy_ ottimizzavano i programmi per ore fino a quando non ottenevano i risultati desiderati. I laboratori _Neat_ "si focalizzavano sulla logica e sulla risoluzione formale dei problemi". ELIZA e SHRDLU erano ben noti _sistemi scruffy_. Negli anni '80, quando è emersa la richiesta di rendere riproducibili i sistemi ML, l'_approccio neat_ ha gradualmente preso il sopravvento in quanto i suoi risultati sono più spiegabili. Allo stesso tempo, iniziarono a formarsi varie scuole di pensiero sull'AI. È stata stabilita una dicotomia tra pratiche ["scruffy" contro "neat AI"](https://wikipedia.org/wiki/Neats_and_scruffies). I laboratori _scruffy_ ottimizzavano i programmi per ore fino a quando non ottenevano i risultati desiderati. I laboratori _Neat_ "si focalizzavano sulla logica e sulla risoluzione formale dei problemi". ELIZA e SHRDLU erano ben noti _sistemi scruffy_. Negli anni '80, quando è emersa la richiesta di rendere riproducibili i sistemi ML, l'_approccio neat_ ha gradualmente preso il sopravvento in quanto i suoi risultati sono più spiegabili.
## Sistemi esperti degli anni '80 ## Sistemi esperti degli anni '80

@ -19,7 +19,7 @@ In questa lezione, si dovrà:
## Prerequisito ## Prerequisito
Come prerequisito, si segua il percorso di apprendimento "Principi di IA responsabile" e si guardi il video qui sotto sull'argomento: Come prerequisito, si segua il percorso di apprendimento "Principi di AI Responsabile" e si guardi il video qui sotto sull'argomento:
Si scopra di più sull'AI Responsabile seguendo questo [percorso di apprendimento](https://docs.microsoft.com/learn/modules/responsible-ai-principles/?WT.mc_id=academic-15963-cxa) Si scopra di più sull'AI Responsabile seguendo questo [percorso di apprendimento](https://docs.microsoft.com/learn/modules/responsible-ai-principles/?WT.mc_id=academic-15963-cxa)
@ -45,13 +45,13 @@ I principali danni legati all'equità possono essere classificati come:
- **Qualità di servizio** Se si addestrano i dati per uno scenario specifico, ma la realtà è molto più complessa, si ottiene un servizio scadente. - **Qualità di servizio** Se si addestrano i dati per uno scenario specifico, ma la realtà è molto più complessa, si ottiene un servizio scadente.
- **Stereotipi**. Associazione di un dato gruppo con attributi preassegnati. - **Stereotipi**. Associazione di un dato gruppo con attributi preassegnati.
- **Denigrazione**. Criticare ed etichettare ingiustamente qualcosa o qualcuno. - **Denigrazione**. Criticare ed etichettare ingiustamente qualcosa o qualcuno.
- **Sovra o sotto rappresentazione**. L'idea è che un certo gruppo non è visto in una certa professione, e qualsiasi servizio o funzione che continua a promuovere ciò contribuisce al danno. - **Sovra o sotto rappresentazione**. L'idea è che un certo gruppo non è visto in una certa professione, e qualsiasi servizio o funzione che continua a promuovere ciò, contribuisce al danno.
Si dia un'occhiata agli esempi. Si dia un'occhiata agli esempi.
### Allocazione ### Allocazione
Si consideri un ipotetico sistema per la scrematura delle domande di prestito. Il sistema tende a scegliere gli uomini bianchi come candidati migliori rispetto ad altri gruppi. Di conseguenza, i prestiti vengono trattenuti da alcuni richiedenti. Si consideri un ipotetico sistema per la scrematura delle domande di prestito. Il sistema tende a scegliere gli uomini bianchi come candidati migliori rispetto ad altri gruppi. Di conseguenza, i prestiti vengono negati ad alcuni richiedenti.
Un altro esempio potrebbe essere uno strumento sperimentale di assunzione sviluppato da una grande azienda per selezionare i candidati. Lo strumento discrimina sistematicamente un genere utilizzando i modelli che sono stati addestrati a preferire parole associate con altro. Ha portato a penalizzare i candidati i cui curricula contengono parole come "squadra di rugby femminile". Un altro esempio potrebbe essere uno strumento sperimentale di assunzione sviluppato da una grande azienda per selezionare i candidati. Lo strumento discrimina sistematicamente un genere utilizzando i modelli che sono stati addestrati a preferire parole associate con altro. Ha portato a penalizzare i candidati i cui curricula contengono parole come "squadra di rugby femminile".
@ -123,7 +123,7 @@ Si utilizza l'esempio di selezione del prestito per isolare il caso e determinar
Quali sono i danni e i benefici associati al prestito? Si pensi agli scenari di falsi negativi e falsi positivi: Quali sono i danni e i benefici associati al prestito? Si pensi agli scenari di falsi negativi e falsi positivi:
**Falsi negativi** (rifiutato, ma Y=1) - in questo caso viene rifiutato un richiedente che sarà in grado di rimborsare un prestito. Questo è un evento avverso perché le risorse dei prestiti sono trattenute da richiedenti qualificati. **Falsi negativi** (rifiutato, ma Y=1) - in questo caso viene rifiutato un richiedente che sarà in grado di rimborsare un prestito. Questo è un evento avverso perché le risorse dei prestiti non sono erogate a richiedenti qualificati.
**Falsi positivi** (accettato, ma Y=0) - in questo caso, il richiedente ottiene un prestito ma alla fine fallisce. Di conseguenza, il caso del richiedente verrà inviato a un'agenzia di recupero crediti che può influire sulle sue future richieste di prestito. **Falsi positivi** (accettato, ma Y=0) - in questo caso, il richiedente ottiene un prestito ma alla fine fallisce. Di conseguenza, il caso del richiedente verrà inviato a un'agenzia di recupero crediti che può influire sulle sue future richieste di prestito.
@ -151,7 +151,7 @@ In questo caso, ci sono 3 gruppi e 2 metriche. Quando si pensa a come il nostro
## Mitigare l'ingiustizia ## Mitigare l'ingiustizia
Per mitigare l'ingiustizia, si esplorari il modello per generare vari modelli mitigati e si confrontino i compromessi tra accuratezza ed equità per selezionare il modello più equo. Per mitigare l'ingiustizia, si esplori il modello per generare vari modelli mitigati e si confrontino i compromessi tra accuratezza ed equità per selezionare il modello più equo.
Questa lezione introduttiva non approfondisce i dettagli dell'algoritmo della mitigazione dell'ingiustizia, come l'approccio di post-elaborazione e riduzione, ma ecco uno strumento che si potrebbe voler provare. Questa lezione introduttiva non approfondisce i dettagli dell'algoritmo della mitigazione dell'ingiustizia, come l'approccio di post-elaborazione e riduzione, ma ecco uno strumento che si potrebbe voler provare.

@ -1,4 +1,4 @@
# Esplora Fairlearn # Esplorare Fairlearn
## Istruzioni ## Istruzioni

@ -17,7 +17,7 @@ Ad alto livello, il mestiere di creare processi di apprendimento automatico (ML)
4. **Addestrare il modello**. Usando i dati di addestramento, si utilizzeranno vari algoritmi per addestrare un modello a riconoscere modelli nei dati. Il modello potrebbe sfruttare pesi interni che possono essere regolati per privilegiare alcune parti dei dati rispetto ad altre per costruire un modello migliore. 4. **Addestrare il modello**. Usando i dati di addestramento, si utilizzeranno vari algoritmi per addestrare un modello a riconoscere modelli nei dati. Il modello potrebbe sfruttare pesi interni che possono essere regolati per privilegiare alcune parti dei dati rispetto ad altre per costruire un modello migliore.
5. **Valutare il modello**. Si utilizzano dati mai visti prima (i dati di test) da quelli raccolti per osservare le prestazioni del modello. 5. **Valutare il modello**. Si utilizzano dati mai visti prima (i dati di test) da quelli raccolti per osservare le prestazioni del modello.
6. **Regolazione dei parametri**. In base alle prestazioni del modello, si può ripetere il processo utilizzando parametri differenti, o variabili, che controllano il comportamento degli algoritmi utilizzati per addestrare il modello. 6. **Regolazione dei parametri**. In base alle prestazioni del modello, si può ripetere il processo utilizzando parametri differenti, o variabili, che controllano il comportamento degli algoritmi utilizzati per addestrare il modello.
7. **Prevedere** Usare nuovi input per testare la precisione del modello. 7. **Prevedere**. Usare nuovi input per testare la precisione del modello.
## Che domanda fare ## Che domanda fare
@ -74,11 +74,11 @@ Occorre armarsi dei propri dati di allenamento, per essere pronti per "adattarli
Una volta completato il processo di addestramento (potrebbero essere necessarie molte iterazioni, o "epoche", per addestrare un modello di grandi dimensioni), si sarà in grado di valutare la qualità del modello utilizzando i dati di test per valutarne le prestazioni. Questi dati sono un sottoinsieme dei dati originali che il modello non ha analizzato in precedenza. Si può stampare una tabella di metriche sulla qualità del proprio modello. Una volta completato il processo di addestramento (potrebbero essere necessarie molte iterazioni, o "epoche", per addestrare un modello di grandi dimensioni), si sarà in grado di valutare la qualità del modello utilizzando i dati di test per valutarne le prestazioni. Questi dati sono un sottoinsieme dei dati originali che il modello non ha analizzato in precedenza. Si può stampare una tabella di metriche sulla qualità del proprio modello.
**Adattamento del modello** 🎓 **Adattamento del modello**
Nel contesto di machine learning, l'adattamento del modello si riferisce all'accuratezza della funzione sottostante del modello mentre tenta di analizzare dati con cui non ha familiarità. Nel contesto di machine learning, l'adattamento del modello si riferisce all'accuratezza della funzione sottostante del modello mentre tenta di analizzare dati con cui non ha familiarità.
? **Inadeguatezza** o **sovraadattamento** sono problemi comuni che degradano la qualità del modello, poiché il modello non si adatta abbastanza bene o troppo bene. Ciò fa sì che il modello esegua previsioni troppo allineate o troppo poco allineate con i suoi dati di addestramento. Un modello overfit (sovraaddestrato) prevede troppo bene i dati di addestramento perché ha appreso troppo bene i dettagli e il rumore dei dati. Un modello underfit (inadeguato) non è accurato in quanto non può né analizzare accuratamente i suoi dati di allenamento né i dati che non ha ancora "visto". 🎓 **Inadeguatezza** o **sovraadattamento** sono problemi comuni che degradano la qualità del modello, poiché il modello non si adatta abbastanza bene o troppo bene. Ciò fa sì che il modello esegua previsioni troppo allineate o troppo poco allineate con i suoi dati di addestramento. Un modello overfit (sovraaddestrato) prevede troppo bene i dati di addestramento perché ha appreso troppo bene i dettagli e il rumore dei dati. Un modello underfit (inadeguato) non è accurato in quanto non può né analizzare accuratamente i suoi dati di allenamento né i dati che non ha ancora "visto".
![modello sovraaddestrato](../images/overfitting.png) ![modello sovraaddestrato](../images/overfitting.png)
> Infografica di [Jen Looper](https://twitter.com/jenlooper) > Infografica di [Jen Looper](https://twitter.com/jenlooper)

@ -1,6 +1,6 @@
# Introduzione a machine learning # Introduzione a machine learning
In questa sezione del curriculum, verranno presentati i concetti di base sottostanti machine learning, di cosa si tratta, e si imparerà la sua storia e le tecniche utilizzate dai ricercatori per lavorarci. Si esplorerà insieme questo nuovo mondo di ML! In questa sezione del programma di studi, verranno presentati i concetti di base sottostanti machine learning, di cosa si tratta, e si imparerà la sua storia e le tecniche utilizzate dai ricercatori per lavorarci. Si esplorerà insieme questo nuovo mondo di ML!
![globo](../images/globe.jpg) ![globo](../images/globe.jpg)
> Foto di <a href="https://unsplash.com/@bill_oxford?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Bill Oxford</a> su <a href="https://unsplash.com/s/photos/globe?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Unsplash</a> > Foto di <a href="https://unsplash.com/@bill_oxford?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Bill Oxford</a> su <a href="https://unsplash.com/s/photos/globe?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Unsplash</a>
@ -13,10 +13,10 @@ In questa sezione del curriculum, verranno presentati i concetti di base sottost
1. [Tecniche di machine learning](../4-techniques-of-ML/translations/README.it.md) 1. [Tecniche di machine learning](../4-techniques-of-ML/translations/README.it.md)
### Crediti ### Crediti
"Introduzione a Machine Learning" è stato scritto con ♥️ da un team di persone tra cui [Muhammad Sakib Khan Inan](https://twitter.com/Sakibinan), [Ornella Altunyan](https://twitter.com/ornelladotcom) e [Jen Looper](https://twitter.com/jenlooper) "Introduzione a Machine Learning" scritto con ♥️ da un team di persone tra cui [Muhammad Sakib Khan Inan](https://twitter.com/Sakibinan), [Ornella Altunyan](https://twitter.com/ornelladotcom) e [Jen Looper](https://twitter.com/jenlooper)
"La Storia di Machine Learning" è stato scritto con ♥️ da [Jen Looper](https://twitter.com/jenlooper) e [Amy Boyd](https://twitter.com/AmyKateNicho) "La Storia di Machine Learning" scritto con ♥️ da [Jen Looper](https://twitter.com/jenlooper) e [Amy Boyd](https://twitter.com/AmyKateNicho)
"Equità e Machine Learning" è stato scritto con ♥️ da [Tomomi Imura](https://twitter.com/girliemac) "Equità e Machine Learning" scritto con ♥️ da [Tomomi Imura](https://twitter.com/girliemac)
"Tecniche di Machine Learning" è stato scritto con ♥️ da [Jen Looper](https://twitter.com/jenlooper) e [Chris Noring](https://twitter.com/softchris) "Tecniche di Machine Learning" scritto con ♥️ da [Jen Looper](https://twitter.com/jenlooper) e [Chris Noring](https://twitter.com/softchris)
Loading…
Cancel
Save