update readme summary

pull/424/head
hi-hi-ray 4 years ago
parent 55e867a32a
commit 9a9af62573

@ -81,11 +81,11 @@ Ao garantir que o conteúdo esteja alinhado com os projetos, o processo torna-se
| 02 | A História de machine learning | [Introdução](../1-Introduction/translations/README.pt-br.md) | Aprenda a história subjacente desta área | [Aula](../1-Introduction/2-history-of-ML/translations/README.pt-br.md) | Jen e Amy |
| 03 | Equidade e aprendizado de máquina | [Introdução](../1-Introduction/translations/README.pt-br.md) | Quais são as questões filosóficas importantes sobre justiça que os alunos devem considerar ao construir e aplicar modelos de ML? | [Aula](../1-Introduction/3-fairness/translations/README.pt-br.md) | Tomomi |
| 04 | Técnicas para machine learning | [Introdução](../1-Introduction/translations/README.pt-br.md) | Quais técnicas os pesquisadores de ML usam para construir modelos de ML? | [Aula](../1-Introduction/4-techniques-of-ML/translations/README.pt-br.md) | Chris e Jen |
| 05 | Introdução à regressão | [Regressão](../2-Regression/README.md) | Comece a usar Python e Scikit-learn para modelos de regressão | <ul><li>[Python](2-Regression/1-Tools/README.md)</li><li>[R](2-Regression/1-Tools/solution/R/lesson_1-R.ipynb)</li></ul> | <ul><li>Jen</li><li>Eric Wanjau</li></ul> |
| 06 | Preços das abóboras norte americanas 🎃 | [Regressão](../2-Regression/README.md) | Visualize e limpe os dados em preparação para o ML | <ul><li>[Python](2-Regression/2-Data/README.md)</li><li>[R](2-Regression/2-Data/solution/R/lesson_2-R.ipynb)</li></ul> | <ul><li>Jen</li><li>Eric Wanjau</li></ul> |
| 07 | Preços das abóboras norte americanas 🎃 | [Regressão](../2-Regression/README.md) | Construa modelos de regressão linear e polinomial | <ul><li>[Python](2-Regression/3-Linear/README.md)</li><li>[R](2-Regression/3-Linear/solution/R/lesson_3-R.ipynb)</li></ul> | <ul><li>Jen</li><li>Eric Wanjau</li></ul> |
| 08 | Preços das abóboras norte americanas 🎃 | [Regressão](../2-Regression/README.md) | Construa um modelo de regressão logística | <ul><li>[Python](2-Regression/4-Logistic/README.md) </li><li>[R](2-Regression/4-Logistic/solution/R/lesson_4-R.ipynb)</li></ul> | <ul><li>Jen</li><li>Eric Wanjau</li></ul> |
| 09 | Uma Web App 🔌 | [Web App](../3-Web-App/README.md) | Crie um aplicativo web para usar seu modelo treinado | [Python](3-Web-App/1-Web-App/README.md) | Jen |
| 05 | Introdução à regressão | [Regressão](../2-Regression/translations/README.pt-br.md) | Comece a usar Python e Scikit-learn para modelos de regressão | <ul><li>[Python](2-Regression/1-Tools/translations/README.pt-br.md)</li><li>[R](2-Regression/1-Tools/solution/R/lesson_1-R.ipynb)</li></ul> | <ul><li>Jen</li><li>Eric Wanjau</li></ul> |
| 06 | Preços das abóboras norte americanas 🎃 | [Regressão](../2-Regression/translations/README.pt-br.md) | Visualize e limpe os dados em preparação para o ML | <ul><li>[Python](2-Regression/2-Data/translations/README.pt-br.md)</li><li>[R](2-Regression/2-Data/solution/R/lesson_2-R.ipynb)</li></ul> | <ul><li>Jen</li><li>Eric Wanjau</li></ul> |
| 07 | Preços das abóboras norte americanas 🎃 | [Regressão](../2-Regression/translations/README.pt-br.md) | Construa modelos de regressão linear e polinomial | <ul><li>[Python](2-Regression/3-Linear/translations/README.pt-br.md)</li><li>[R](2-Regression/3-Linear/solution/R/lesson_3-R.ipynb)</li></ul> | <ul><li>Jen</li><li>Eric Wanjau</li></ul> |
| 08 | Preços das abóboras norte americanas 🎃 | [Regressão](../2-Regression/translations/README.pt-br.md) | Construa um modelo de regressão logística | <ul><li>[Python](2-Regression/4-Logistic/translations/README.pt-br.md) </li><li>[R](2-Regression/4-Logistic/solution/R/lesson_4-R.ipynb)</li></ul> | <ul><li>Jen</li><li>Eric Wanjau</li></ul> |
| 09 | Uma Web App 🔌 | [Web App](../3-Web-App/translations/README.pt-br.md) | Crie um aplicativo web para usar seu modelo treinado | [Python](3-Web-App/1-Web-App/translations/README.pt-br.md) | Jen |
| 10 | Introdução à classificação | [Classificação](../4-Classification/README.md) | Limpe, prepare e visualize seus dados; introdução à classificação |<ul><li> [Python](4-Classification/1-Introduction/README.md) </li><li>[R](4-Classification/1-Introduction/solution/R/lesson_10-R.ipynb) | <ul><li>Jen e Cassie</li><li>Eric Wanjau</li></ul> |
| 11 | Deliciosas cozinhas asiáticas e indianas 🍜 | [Classificação](../4-Classification/README.md) | Introdução aos classificadores |<ul><li> [Python](4-Classification/2-Classifiers-1/README.md)</li><li>[R](4-Classification/2-Classifiers-1/solution/R/lesson_11-R.ipynb) | <ul><li>Jen e Cassie</li><li>Eric Wanjau</li></ul> |
| 12 | Deliciosas cozinhas asiáticas e indianas 🍜 | [Classificação](../4-Classification/README.md) | Mais classificadores |<ul><li> [Python](4-Classification/3-Classifiers-2/README.md)</li><li>[R](4-Classification/3-Classifiers-2/solution/R/lesson_12-R.ipynb) | <ul><li>Jen e Cassie</li><li>Eric Wanjau</li></ul> |

Loading…
Cancel
Save