Fix README.ja.md of section 2-2

pull/722/head
Rubber Goose 2 years ago
parent 8ef250efe0
commit 927f93a6d4

@ -19,7 +19,7 @@ Scikit-learnを使って機械学習モデルの構築を行うために必要
どのような質問に答えるかによって、どのようなMLアルゴリズムを活用するかが決まります。また、返ってくる回答の質は、データの性質に大きく依存します。
このレッスンのために用意された[データ]((../../data/US-pumpkins.csv))を見てみましょう。この.csvファイルは、VS Codeで開くことができます。ざっと確認してみると、空欄があったり、文字列や数値データが混在していることがわかります。また、「Package」という奇妙な列では「sacks」や 「bins」などの異なる単位の値が混在しています。このように、データはちょっとした混乱状態にあります。
このレッスンのために用意された[データ](../../data/US-pumpkins.csv)を見てみましょう。この.csvファイルは、VS Codeで開くことができます。ざっと確認してみると、空欄があったり、文字列や数値データが混在していることがわかります。また、「Package」という奇妙な列では「sacks」や 「bins」などの異なる単位の値が混在しています。このように、データはちょっとした混乱状態にあります。
実際のところ、MLモデルの作成にすぐに使えるような整ったデータセットをそのまま受け取ることはあまりありません。このレッスンでは、Pythonの標準ライブラリを使って生のデータセットを準備する方法を学びます。また、データを可視化するための様々なテクニックを学びます。

Loading…
Cancel
Save