changing links for list of content

pull/681/head
Simsuk 2 years ago
parent c78b2ecca9
commit 8b84230fcb

@ -1,72 +1,70 @@
# Introduciton to Pytorch
- [Introduction](https://aman.ai/primers/pytorch/#introduction)
- [Getting Started](https://aman.ai/primers/pytorch/#getting-started)
- [Creating a Virtual Environment](https://aman.ai/primers/pytorch/#creating-a-virtual-environment)
- [Using a GPU?](https://aman.ai/primers/pytorch/#using-a-gpu)
- [Recommended Code Structure](https://aman.ai/primers/pytorch/#recommended-code-structure)
- [Running Experiments](https://aman.ai/primers/pytorch/#running-experiments)
- [Training and Evaluation](https://aman.ai/primers/pytorch/#training-and-evaluation)
- [Hyperparameter Search](https://aman.ai/primers/pytorch/#hyperparameter-search)
- [Display the Results of Multiple Experiments](https://aman.ai/primers/pytorch/#display-the-results-of-multiple-experiments)
- [PyTorch Introduction](https://aman.ai/primers/pytorch/#pytorch-introduction)
- [Goals of This Tutorial](https://aman.ai/primers/pytorch/#goals-of-this-tutorial)
- [Resources](https://aman.ai/primers/pytorch/#resources)
- [Code Layout](https://aman.ai/primers/pytorch/#code-layout)
- [Tensors and Variables](https://aman.ai/primers/pytorch/#tensors-and-variables)
- [Changing Datatypes](https://aman.ai/primers/pytorch/#changing-datatypes)
- [Automatic Differentiation](https://aman.ai/primers/pytorch/#automatic-differentiation)
- [Disabling Automatic Differentiation](https://aman.ai/primers/pytorch/#disabling-automatic-differentiation)
- [Using `requires_grad=False`](https://aman.ai/primers/pytorch/#using-requires_gradfalse)
- [Using `torch.no_grad()`](https://aman.ai/primers/pytorch/#using-torchno_grad)
- [Related: Using `model.eval()`](https://aman.ai/primers/pytorch/#related-using-modeleval)
- [Parameters](https://aman.ai/primers/pytorch/#parameters)
- [`nn.Parameter` Internals](https://aman.ai/primers/pytorch/#nnparameter-internals)
- [Difference Between Parameter vs. Tensor in PyTorch](https://aman.ai/primers/pytorch/#difference-between-parameter-vs-tensor-in-pytorch)
- [Core Training Step](https://aman.ai/primers/pytorch/#core-training-step)
- [Models in PyTorch](https://aman.ai/primers/pytorch/#models-in-pytorch)
- [Loss Functions](https://aman.ai/primers/pytorch/#loss-functions)
- [Optimizers](https://aman.ai/primers/pytorch/#optimizers)
- [Training vs. Evaluation](https://aman.ai/primers/pytorch/#training-vs-evaluation)
- [Computing Metrics](https://aman.ai/primers/pytorch/#computing-metrics)
- [Saving and Loading Models](https://aman.ai/primers/pytorch/#saving-and-loading-models)
- [Using the GPU](https://aman.ai/primers/pytorch/#using-the-gpu)
- [Painless Debugging](https://aman.ai/primers/pytorch/#painless-debugging)
- [Selected Methods](https://aman.ai/primers/pytorch/#selected-methods)
- [Tensor Shape/size](https://aman.ai/primers/pytorch/#tensor-shapesize)
- [Initialization](https://aman.ai/primers/pytorch/#initialization)
- [Static](https://aman.ai/primers/pytorch/#static)
- [Standard Normal](https://aman.ai/primers/pytorch/#standard-normal)
- [Xavier/Glorot](https://aman.ai/primers/pytorch/#xavierglorot)
- [Uniform](https://aman.ai/primers/pytorch/#uniform)
- [Normal](https://aman.ai/primers/pytorch/#normal)
- [Kaiming/He](https://aman.ai/primers/pytorch/#kaiminghe)
- [Uniform](https://aman.ai/primers/pytorch/#uniform-1)
- [Normal](https://aman.ai/primers/pytorch/#normal-1)
- [Send Tensor to GPU](https://aman.ai/primers/pytorch/#send-tensor-to-gpu)
- [Convert to NumPy](https://aman.ai/primers/pytorch/#convert-to-numpy)
- [`tensor.item()`: Convert Single Value Tensor to Scalar](https://aman.ai/primers/pytorch/#tensoritem-convert-single-value-tensor-to-scalar)
- [`tensor.tolist()`: Convert Multi Value Tensor to Scalar](https://aman.ai/primers/pytorch/#tensortolist-convert-multi-value-tensor-to-scalar)
- [Len](https://aman.ai/primers/pytorch/#len)
- [Arange](https://aman.ai/primers/pytorch/#arange)
- [Linspace](https://aman.ai/primers/pytorch/#linspace)
- [View](https://aman.ai/primers/pytorch/#view)
- [Transpose](https://aman.ai/primers/pytorch/#transpose)
- [Swapaxes](https://aman.ai/primers/pytorch/#swapaxes)
- [Permute](https://aman.ai/primers/pytorch/#permute)
- [Movedim](https://aman.ai/primers/pytorch/#movedim)
- [Randperm](https://aman.ai/primers/pytorch/#randperm)
- [Where](https://aman.ai/primers/pytorch/#where)
- [Reshape](https://aman.ai/primers/pytorch/#reshape)
- [Concatenate](https://aman.ai/primers/pytorch/#concatenate)
- [Squeeze](https://aman.ai/primers/pytorch/#squeeze)
- [Unsqueeze](https://aman.ai/primers/pytorch/#unsqueeze)
- [Print Model Summary](https://aman.ai/primers/pytorch/#print-model-summary)
- [Resources](https://aman.ai/primers/pytorch/#resources-2)
- [References](https://aman.ai/primers/pytorch/#references)
- [Citation](https://aman.ai/primers/pytorch/#citation)
- [Overview](#overview)
- [Creating a Virtual Environment](#creating-a-virtual-environment)
- [Using a GPU?](#using-a-gpu)
- [Recommended Code Structure](#recommended-code-structure)
- [Running Experiments](#running-experiments)
- [Training and Evaluation](#training-and-evaluation)
- [Hyperparameter Search](#hyperparameter-search)
- [Display the Results of Multiple Experiments](#display-the-results-of-multiple-experiments)
- [PyTorch Introduction](#pytorch-introduction)
- [Goals of This Tutorial](#goals-of-this-tutorial)
- [Resources](#resources)
- [Code Layout](#code-layout)
- [Tensors and Variables](#tensors-and-variables)
- [Changing Datatypes](#changing-datatypes)
- [Automatic Differentiation](#automatic-differentiation)
- [Disabling Automatic Differentiation](#disabling-automatic-differentiation)
- [Using requires_grad=False](#using-requires_gradfalse)
- [Using torch.no_grad()](#using-torchno_grad)
- [Related: Using model.eval()](#related-using-modeleval)
- [Parameters](#parameters)
- [nn.Parameter Internals](#nnparameter-internals)
- [Difference Between Parameter vs. Tensor in PyTorch](#difference-between-parameter-vs-tensor-in-pytorch)
- [Core Training Step](#core-training-step)
- [Models in PyTorch](#models-in-pytorch)
- [Loss Functions](#loss-functions)
- [Optimizers](#optimizers)
- [Training vs. Evaluation](#training-vs-evaluation)
- [Computing Metrics](#computing-metrics)
- [Saving and Loading Models](#saving-and-loading-models)
- [Using the GPU](#using-the-gpu)
- [Painless Debugging](#painless-debugging)
- [Selected Methods](#selected-methods)
- [Tensor Shape/size](#tensor-shapesize)
- [Initialization](#initialization)
- [Static](#static)
- [Standard Normal](#standard-normal)
- [Xavier/Glorot](#xavierglorot)
- [Uniform](#uniform)
- [Normal](#normal)
- [Kaiming/He](#kaiminghe)
- [Uniform](#uniform-1)
- [Normal](#normal-1)
- [Send Tensor to GPU](#send-tensor-to-gpu)
- [Convert to NumPy](#convert-to-numpy)
- [tensor.item(): Convert Single Value Tensor to Scalar](#tensoritem-convert-single-value-tensor-to-scalar)
- [tensor.tolist(): Convert Multi Value Tensor to Scalar](#tensortolist-convert-multi-value-tensor-to-scalar)
- [Len](#len)
- [Arange](#arange)
- [Linspace](#linspace)
- [View](#view)
- [Transpose](#transpose)
- [Swapaxes](#swapaxes)
- [Permute](#permute)
- [Movedim](#movedim)
- [Randperm](#randperm)
- [Where](#where)
- [Reshape](#reshape)
- [Concatenate](#concatenate)
- [Squeeze](#squeeze)
- [Unsqueeze](#unsqueeze)
- [Print Model Summary](#print-model-summary)
- [Resources](#resources-2)
- [References](#references)
- [Citation](#citation)
[![Colab Notebook](https://aman.ai/primers/assets/colab-open.svg)](https://colab.research.google.com/github/amanchadha/aman-ai/blob/master/pytorch.ipynb)
@ -77,9 +75,9 @@ PyTorch is an open-source machine learning library developed by Facebook's AI Re
- This tutorial gives an overview of the Pytorch for deep learning model building, trainng and evaluation with practical examples as well as descrition of possible project environments
## Options for utilising GPU
Working Environments for PyTorch
When diving into PyTorch, you have multiple options in terms of development environments. Two of the most popular choices are Visual Studio Code (VSCode) and Google Colab:
## Options for utilising GPU and environments
When diving into PyTorch, you have multiple options in terms of development environments and GPU resources. Two of the most popular choices are Visual Studio Code (VSCode) and Google Colab:
### Visual Studio Code (VSCode)
Description: VSCode is a free, open-source code editor developed by Microsoft. It supports a variety of programming languages and has a rich ecosystem of extensions, including support for Python and PyTorch.
@ -720,7 +718,7 @@ torch.randn(2, 3) # Returns a 2x3 matrix sampled from the standard normal distri
- Fills the input Tensor with values according to the method described in Understanding the difficulty of training deep feed-forward neural networks - Glorot, X. & Bengio, Y. (2010), using a uniform distribution. The resulting tensor will have values sampled from $\mathcal{U}(-a, a)$ where,
$$
a = \text{gain} \times \sqrt{\frac{6}{\text{fan_in} + \text{fan_out}}}
a = \text{gain} \times \sqrt{\frac{6}{\text{fan-in} + \text{fan-out}}}
$$
- Also known as Glorot initialization.
@ -737,7 +735,7 @@ nn.init.xavier_uniform_(a, gain=nn.init.calculate_gain('relu')) # Initializes a
- Fills the input Tensor with values according to the method described in Understanding the difficulty of training deep feed-forward neural networks - Glorot, X. & Bengio, Y. (2010), using a normal distribution. The resulting tensor will have values sampled from $\mathcal{N}(0, \text{std}^2)$ where,
$$
\text{std} = \text{gain} \times \sqrt{\frac{2}{\text{fan_in} + \text{fan_out}}}
\text{std} = \text{gain} \times \sqrt{\frac{2}{\text{fan-in} + \text{fan-out}}}
$$
- Also known as Glorot initialization.
@ -756,7 +754,7 @@ nn.init.xavier_normal_(a) # Initializes a with the Xavier normal method
- Fills the input Tensor with values according to the method described in Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification - He, K. et al. (2015), using a uniform distribution. The resulting tensor will have values sampled from $\mathcal{U}(-\text{bound}, \text{bound})$ where,
$$
\text{bound} = \text{gain} \times \sqrt{\frac{3}{\text{fan_mode}}}
\text{bound} = \text{gain} \times \sqrt{\frac{3}{\text{fan-mode}}}
$$
- Also known as He initialization.
@ -773,7 +771,7 @@ nn.init.kaiming_uniform_(a, mode='fan_in', nonlinearity='relu') # Initializes a
- Fills the input Tensor with values according to the method described in Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification - He, K. et al. (2015), using a normal distribution. The resulting tensor will have values sampled from $\mathcal{N}(0, \text{std}^2)$ where,
$$
\operatorname{std}=\frac{\text { gain }}{\sqrt{\text { fan_mode }}}
\operatorname{std}=\frac{\text { gain }}{\sqrt{\text { fan-mode }}}
$$ 
- Also known as He initialization.

Loading…
Cancel
Save