Merge pull request #223 from Foo-x/format-readme

style: format README
pull/225/head
Jen Looper 3 years ago committed by GitHub
commit 5900887276
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -23,16 +23,17 @@ Travel with us around the world as we apply these classic techniques to data fro
**🙏 Special thanks 🙏 to our Microsoft Student Ambassador authors, reviewers and content contributors**, notably Rishit Dagli, Muhammad Sakib Khan Inan, Rohan Raj, Alexandru Petrescu, Abhishek Jaiswal, Nawrin Tabassum, Ioan Samuila, and Snigdha Agarwal **🙏 Special thanks 🙏 to our Microsoft Student Ambassador authors, reviewers and content contributors**, notably Rishit Dagli, Muhammad Sakib Khan Inan, Rohan Raj, Alexandru Petrescu, Abhishek Jaiswal, Nawrin Tabassum, Ioan Samuila, and Snigdha Agarwal
--- ---
# Getting Started # Getting Started
**Students**, to use this curriculum, fork the entire repo to your own GitHub account and complete the exercises on your own or with a group: **Students**, to use this curriculum, fork the entire repo to your own GitHub account and complete the exercises on your own or with a group:
- Start with a pre-lecture quiz - Start with a pre-lecture quiz.
- Read the lecture and complete the activities, pausing and reflecting at each knowledge check. - Read the lecture and complete the activities, pausing and reflecting at each knowledge check.
- Try to create the projects by comprehending the lessons rather than running the solution code; however that code is available in the `/solution` folders in each project-oriented lesson. - Try to create the projects by comprehending the lessons rather than running the solution code; however that code is available in the `/solution` folders in each project-oriented lesson.
- Take the post-lecture quiz - Take the post-lecture quiz.
- Complete the challenge - Complete the challenge.
- Complete the assignment - Complete the assignment.
- After completing a lesson group, visit the [Discussion board](https://github.com/microsoft/ML-For-Beginners/discussions) and "learn out loud" by filling out the appropriate PAT rubric. A 'PAT' is a Progress Assessment Tool that is a rubric you fill out to further your learning. You can also react to other PATs so we can learn together. - After completing a lesson group, visit the [Discussion board](https://github.com/microsoft/ML-For-Beginners/discussions) and "learn out loud" by filling out the appropriate PAT rubric. A 'PAT' is a Progress Assessment Tool that is a rubric you fill out to further your learning. You can also react to other PATs so we can learn together.
> For further study, we recommend following these [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/k7o7tg1gp306q4?WT.mc_id=academic-15963-cxa) modules and learning paths. > For further study, we recommend following these [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/k7o7tg1gp306q4?WT.mc_id=academic-15963-cxa) modules and learning paths.
@ -48,6 +49,7 @@ Travel with us around the world as we apply these classic techniques to data fro
> 🎥 Click the image above for a video about the project and the folks who created it! > 🎥 Click the image above for a video about the project and the folks who created it!
--- ---
## Pedagogy ## Pedagogy
We have chosen two pedagogical tenets while building this curriculum: ensuring that it is hands-on **project-based** and that it includes **frequent quizzes**. In addition, this curriculum has a common **theme** to give it cohesion. We have chosen two pedagogical tenets while building this curriculum: ensuring that it is hands-on **project-based** and that it includes **frequent quizzes**. In addition, this curriculum has a common **theme** to give it cohesion.
@ -55,6 +57,7 @@ We have chosen two pedagogical tenets while building this curriculum: ensuring t
By ensuring that the content aligns with projects, the process is made more engaging for students and retention of concepts will be augmented. In addition, a low-stakes quiz before a class sets the intention of the student towards learning a topic, while a second quiz after class ensures further retention. This curriculum was designed to be flexible and fun and can be taken in whole or in part. The projects start small and become increasingly complex by the end of the 12 week cycle. This curriculum also includes a postscript on real-world applications of ML, which can be used as extra credit or as a basis for discussion. By ensuring that the content aligns with projects, the process is made more engaging for students and retention of concepts will be augmented. In addition, a low-stakes quiz before a class sets the intention of the student towards learning a topic, while a second quiz after class ensures further retention. This curriculum was designed to be flexible and fun and can be taken in whole or in part. The projects start small and become increasingly complex by the end of the 12 week cycle. This curriculum also includes a postscript on real-world applications of ML, which can be used as extra credit or as a basis for discussion.
> Find our [Code of Conduct](CODE_OF_CONDUCT.md), [Contributing](CONTRIBUTING.md), and [Translation](TRANSLATIONS.md) guidelines. We welcome your constructive feedback! > Find our [Code of Conduct](CODE_OF_CONDUCT.md), [Contributing](CONTRIBUTING.md), and [Translation](TRANSLATIONS.md) guidelines. We welcome your constructive feedback!
## Each lesson includes: ## Each lesson includes:
- optional sketchnote - optional sketchnote
@ -70,9 +73,8 @@ By ensuring that the content aligns with projects, the process is made more enga
> **A note about quizzes**: All quizzes are contained [in this app](https://jolly-sea-0a877260f.azurestaticapps.net), for 50 total quizzes of three questions each. They are linked from within the lessons but the quiz app can be run locally; follow the instruction in the `quiz-app` folder. > **A note about quizzes**: All quizzes are contained [in this app](https://jolly-sea-0a877260f.azurestaticapps.net), for 50 total quizzes of three questions each. They are linked from within the lessons but the quiz app can be run locally; follow the instruction in the `quiz-app` folder.
| Lesson Number | Topic | Lesson Grouping | Learning Objectives | Linked Lesson | Author | | Lesson Number | Topic | Lesson Grouping | Learning Objectives | Linked Lesson | Author |
| :-----------: | :--------------------------------------------------------: | :-------------------------------------------------: | ------------------------------------------------------------------------------------------------------------------------------- | :---------------------------------------------------: | :------------: | | :-----------: | :------------------------------------------------------------: | :-------------------------------------------------: | ------------------------------------------------------------------------------------------------------------------------------- | :---------------------------------------------------: | :------------: |
| 01 | Introduction to machine learning | [Introduction](1-Introduction/README.md) | Learn the basic concepts behind machine learning | [lesson](1-Introduction/1-intro-to-ML/README.md) | Muhammad | | 01 | Introduction to machine learning | [Introduction](1-Introduction/README.md) | Learn the basic concepts behind machine learning | [lesson](1-Introduction/1-intro-to-ML/README.md) | Muhammad |
| 02 | The History of machine learning | [Introduction](1-Introduction/README.md) | Learn the history underlying this field | [lesson](1-Introduction/2-history-of-ML/README.md) | Jen and Amy | | 02 | The History of machine learning | [Introduction](1-Introduction/README.md) | Learn the history underlying this field | [lesson](1-Introduction/2-history-of-ML/README.md) | Jen and Amy |
| 03 | Fairness and machine learning | [Introduction](1-Introduction/README.md) | What are the important philosophical issues around fairness that students should consider when building and applying ML models? | [lesson](1-Introduction/3-fairness/README.md) | Tomomi | | 03 | Fairness and machine learning | [Introduction](1-Introduction/README.md) | What are the important philosophical issues around fairness that students should consider when building and applying ML models? | [lesson](1-Introduction/3-fairness/README.md) | Tomomi |
@ -91,24 +93,25 @@ By ensuring that the content aligns with projects, the process is made more enga
| 16 | Introduction to natural language processing ☕️ | [Natural language processing](6-NLP/README.md) | Learn the basics about NLP by building a simple bot | [lesson](6-NLP/1-Introduction-to-NLP/README.md) | Stephen | | 16 | Introduction to natural language processing ☕️ | [Natural language processing](6-NLP/README.md) | Learn the basics about NLP by building a simple bot | [lesson](6-NLP/1-Introduction-to-NLP/README.md) | Stephen |
| 17 | Common NLP Tasks ☕️ | [Natural language processing](6-NLP/README.md) | Deepen your NLP knowledge by understanding common tasks required when dealing with language structures | [lesson](6-NLP/2-Tasks/README.md) | Stephen | | 17 | Common NLP Tasks ☕️ | [Natural language processing](6-NLP/README.md) | Deepen your NLP knowledge by understanding common tasks required when dealing with language structures | [lesson](6-NLP/2-Tasks/README.md) | Stephen |
| 18 | Translation and sentiment analysis ♥️ | [Natural language processing](6-NLP/README.md) | Translation and sentiment analysis with Jane Austen | [lesson](6-NLP/3-Translation-Sentiment/README.md) | Stephen | | 18 | Translation and sentiment analysis ♥️ | [Natural language processing](6-NLP/README.md) | Translation and sentiment analysis with Jane Austen | [lesson](6-NLP/3-Translation-Sentiment/README.md) | Stephen |
| 19 | Romantic hotels of Europe ♥️ | [Natural language processing](6-NLP/README.md) | Sentiment analysis with hotel reviews, 1 | [lesson](6-NLP/4-Hotel-Reviews-1/README.md) | Stephen | | 19 | Romantic hotels of Europe ♥️ | [Natural language processing](6-NLP/README.md) | Sentiment analysis with hotel reviews 1 | [lesson](6-NLP/4-Hotel-Reviews-1/README.md) | Stephen |
| 20 | Romantic hotels of Europe ♥️ | [Natural language processing](6-NLP/README.md) | Sentiment analysis with hotel reviews 2 | [lesson](6-NLP/5-Hotel-Reviews-2/README.md) | Stephen | | 20 | Romantic hotels of Europe ♥️ | [Natural language processing](6-NLP/README.md) | Sentiment analysis with hotel reviews 2 | [lesson](6-NLP/5-Hotel-Reviews-2/README.md) | Stephen |
| 21 | Introduction to time series forecasting | [Time series](7-TimeSeries/README.md) | Introduction to time series forecasting | [lesson](7-TimeSeries/1-Introduction/README.md) | Francesca | | 21 | Introduction to time series forecasting | [Time series](7-TimeSeries/README.md) | Introduction to time series forecasting | [lesson](7-TimeSeries/1-Introduction/README.md) | Francesca |
| 22 | ⚡️ World Power Usage ⚡️ - time series forecasting with ARIMA | [Time series](7-TimeSeries/README.md) | Time series forecasting with ARIMA | [lesson](7-TimeSeries/2-ARIMA/README.md) | Francesca | | 22 | ⚡️ World Power Usage ⚡️ - time series forecasting with ARIMA | [Time series](7-TimeSeries/README.md) | Time series forecasting with ARIMA | [lesson](7-TimeSeries/2-ARIMA/README.md) | Francesca |
| 23 | Introduction to reinforcement learning | [Reinforcement learning](8-Reinforcement/README.md) | Introduction to reinforcement learning with Q-Learning | [lesson](8-Reinforcement/1-QLearning/README.md) | Dmitry | | 23 | Introduction to reinforcement learning | [Reinforcement learning](8-Reinforcement/README.md) | Introduction to reinforcement learning with Q-Learning | [lesson](8-Reinforcement/1-QLearning/README.md) | Dmitry |
| 24 | Help Peter avoid the wolf! 🐺 | [Reinforcement learning](8-Reinforcement/README.md) | Reinforcement learning Gym | [lesson](8-Reinforcement/2-Gym/README.md) | Dmitry | | 24 | Help Peter avoid the wolf! 🐺 | [Reinforcement learning](8-Reinforcement/README.md) | Reinforcement learning Gym | [lesson](8-Reinforcement/2-Gym/README.md) | Dmitry |
| Postscript | Real-World ML scenarios and applications | [ML in the Wild](9-Real-World/README.md) | Interesting and revealing real-world applications of classical ML | [lesson](9-Real-World/1-Applications/README.md) | Team | | Postscript | Real-World ML scenarios and applications | [ML in the Wild](9-Real-World/README.md) | Interesting and revealing real-world applications of classical ML | [lesson](9-Real-World/1-Applications/README.md) | Team |
## Offline access ## Offline access
You can run this documentation offline by using [Docsify](https://docsify.js.org/#/). Fork this repo, [install Docsify](https://docsify.js.org/#/quickstart) on your local machine, and then in the root folder of this repo, type `docsify serve`. The website will be served on port 3000 on your localhost: `localhost:3000`. You can run this documentation offline by using [Docsify](https://docsify.js.org/#/). Fork this repo, [install Docsify](https://docsify.js.org/#/quickstart) on your local machine, and then in the root folder of this repo, type `docsify serve`. The website will be served on port 3000 on your localhost: `localhost:3000`.
## PDFs ## PDFs
Find a pdf of the curriculum with links [here](pdf/readme.pdf) Find a pdf of the curriculum with links [here](pdf/readme.pdf).
## Help Wanted! ## Help Wanted!
Would you like to contribute a translation? Please read our [translation guidelines](TRANSLATIONS.md) and add input [here](https://github.com/microsoft/ML-For-Beginners/issues/71) Would you like to contribute a translation? Please read our [translation guidelines](TRANSLATIONS.md) and add input [here](https://github.com/microsoft/ML-For-Beginners/issues/71).
## Other Curricula ## Other Curricula
@ -116,4 +119,3 @@ Our team produces other curricula! Check out:
- [Web Dev for Beginners](https://aka.ms/webdev-beginners) - [Web Dev for Beginners](https://aka.ms/webdev-beginners)
- [IoT for Beginners](https://aka.ms/iot-beginners) - [IoT for Beginners](https://aka.ms/iot-beginners)

Loading…
Cancel
Save