More Classifiers

pull/719/head
raygaeta 2 years ago
parent f6855e0c65
commit 4873a37d14

@ -9,12 +9,179 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 9, "execution_count": 38,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
"output_type": "execute_result",
"data": { "data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Unnamed: 0</th>\n",
" <th>cuisine</th>\n",
" <th>almond</th>\n",
" <th>angelica</th>\n",
" <th>anise</th>\n",
" <th>anise_seed</th>\n",
" <th>apple</th>\n",
" <th>apple_brandy</th>\n",
" <th>apricot</th>\n",
" <th>armagnac</th>\n",
" <th>...</th>\n",
" <th>whiskey</th>\n",
" <th>white_bread</th>\n",
" <th>white_wine</th>\n",
" <th>whole_grain_wheat_flour</th>\n",
" <th>wine</th>\n",
" <th>wood</th>\n",
" <th>yam</th>\n",
" <th>yeast</th>\n",
" <th>yogurt</th>\n",
" <th>zucchini</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0</td>\n",
" <td>indian</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>1</td>\n",
" <td>indian</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>2</td>\n",
" <td>indian</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>3</td>\n",
" <td>indian</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>4</td>\n",
" <td>indian</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>5 rows × 382 columns</p>\n",
"</div>"
],
"text/plain": [ "text/plain": [
" Unnamed: 0 cuisine almond angelica anise anise_seed apple \\\n", " Unnamed: 0 cuisine almond angelica anise anise_seed apple \\\n",
"0 0 indian 0 0 0 0 0 \n", "0 0 indian 0 0 0 0 0 \n",
@ -38,11 +205,11 @@
"4 0 0 0 0 0 1 0 \n", "4 0 0 0 0 0 1 0 \n",
"\n", "\n",
"[5 rows x 382 columns]" "[5 rows x 382 columns]"
], ]
"text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>Unnamed: 0</th>\n <th>cuisine</th>\n <th>almond</th>\n <th>angelica</th>\n <th>anise</th>\n <th>anise_seed</th>\n <th>apple</th>\n <th>apple_brandy</th>\n <th>apricot</th>\n <th>armagnac</th>\n <th>...</th>\n <th>whiskey</th>\n <th>white_bread</th>\n <th>white_wine</th>\n <th>whole_grain_wheat_flour</th>\n <th>wine</th>\n <th>wood</th>\n <th>yam</th>\n <th>yeast</th>\n <th>yogurt</th>\n <th>zucchini</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td>0</td>\n <td>indian</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>...</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n </tr>\n <tr>\n <th>1</th>\n <td>1</td>\n <td>indian</td>\n <td>1</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>...</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n </tr>\n <tr>\n <th>2</th>\n <td>2</td>\n <td>indian</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>...</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n </tr>\n <tr>\n <th>3</th>\n <td>3</td>\n <td>indian</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>...</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n </tr>\n <tr>\n <th>4</th>\n <td>4</td>\n <td>indian</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>...</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>1</td>\n <td>0</td>\n </tr>\n </tbody>\n</table>\n<p>5 rows × 382 columns</p>\n</div>"
}, },
"execution_count": 38,
"metadata": {}, "metadata": {},
"execution_count": 9 "output_type": "execute_result"
} }
], ],
"source": [ "source": [
@ -53,11 +220,10 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 10, "execution_count": 39,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
"output_type": "execute_result",
"data": { "data": {
"text/plain": [ "text/plain": [
"0 indian\n", "0 indian\n",
@ -68,8 +234,9 @@
"Name: cuisine, dtype: object" "Name: cuisine, dtype: object"
] ]
}, },
"execution_count": 39,
"metadata": {}, "metadata": {},
"execution_count": 10 "output_type": "execute_result"
} }
], ],
"source": [ "source": [
@ -79,12 +246,179 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 11, "execution_count": 40,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
"output_type": "execute_result",
"data": { "data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>almond</th>\n",
" <th>angelica</th>\n",
" <th>anise</th>\n",
" <th>anise_seed</th>\n",
" <th>apple</th>\n",
" <th>apple_brandy</th>\n",
" <th>apricot</th>\n",
" <th>armagnac</th>\n",
" <th>artemisia</th>\n",
" <th>artichoke</th>\n",
" <th>...</th>\n",
" <th>whiskey</th>\n",
" <th>white_bread</th>\n",
" <th>white_wine</th>\n",
" <th>whole_grain_wheat_flour</th>\n",
" <th>wine</th>\n",
" <th>wood</th>\n",
" <th>yam</th>\n",
" <th>yeast</th>\n",
" <th>yogurt</th>\n",
" <th>zucchini</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>5 rows × 380 columns</p>\n",
"</div>"
],
"text/plain": [ "text/plain": [
" almond angelica anise anise_seed apple apple_brandy apricot \\\n", " almond angelica anise anise_seed apple apple_brandy apricot \\\n",
"0 0 0 0 0 0 0 0 \n", "0 0 0 0 0 0 0 0 \n",
@ -108,17 +442,147 @@
"4 0 0 0 0 0 1 0 \n", "4 0 0 0 0 0 1 0 \n",
"\n", "\n",
"[5 rows x 380 columns]" "[5 rows x 380 columns]"
], ]
"text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>almond</th>\n <th>angelica</th>\n <th>anise</th>\n <th>anise_seed</th>\n <th>apple</th>\n <th>apple_brandy</th>\n <th>apricot</th>\n <th>armagnac</th>\n <th>artemisia</th>\n <th>artichoke</th>\n <th>...</th>\n <th>whiskey</th>\n <th>white_bread</th>\n <th>white_wine</th>\n <th>whole_grain_wheat_flour</th>\n <th>wine</th>\n <th>wood</th>\n <th>yam</th>\n <th>yeast</th>\n <th>yogurt</th>\n <th>zucchini</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>...</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n </tr>\n <tr>\n <th>1</th>\n <td>1</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>...</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n </tr>\n <tr>\n <th>2</th>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>...</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n </tr>\n <tr>\n <th>3</th>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>...</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n </tr>\n <tr>\n <th>4</th>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>...</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>1</td>\n <td>0</td>\n </tr>\n </tbody>\n</table>\n<p>5 rows × 380 columns</p>\n</div>"
}, },
"execution_count": 40,
"metadata": {}, "metadata": {},
"execution_count": 11 "output_type": "execute_result"
} }
], ],
"source": [ "source": [
"cuisines_feature_df = cuisines_df.drop(['Unnamed: 0', 'cuisine'], axis=1)\n", "cuisines_feature_df = cuisines_df.drop(['Unnamed: 0', 'cuisine'], axis=1)\n",
"cuisines_feature_df.head()" "cuisines_feature_df.head()"
] ]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.neighbors import KNeighborsClassifier\n",
"from sklearn.linear_model import LogisticRegression\n",
"from sklearn.svm import SVC\n",
"from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier\n",
"from sklearn.model_selection import train_test_split, cross_val_score\n",
"from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report, precision_recall_curve\n",
"import numpy as np"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {},
"outputs": [],
"source": [
"X_train, X_test, y_train, y_test = train_test_split(cuisines_feature_df, cuisines_label_df, test_size=0.3)"
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {},
"outputs": [],
"source": [
"C = 10\n",
"# Create different classifiers.\n",
"classifiers = {\n",
" 'Linear SVC': SVC(kernel='linear', C=C, probability=True,random_state=0),\n",
" 'KNN classifier': KNeighborsClassifier(C),\n",
" 'SVC': SVC(),\n",
" 'RFST': RandomForestClassifier(n_estimators=100),\n",
" 'ADA': AdaBoostClassifier(n_estimators=100)\n",
"}"
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Accuracy (train) for Linear SVC: 78.6% \n",
" precision recall f1-score support\n",
"\n",
" chinese 0.66 0.72 0.69 233\n",
" indian 0.88 0.86 0.87 236\n",
" japanese 0.80 0.73 0.76 250\n",
" korean 0.82 0.75 0.78 248\n",
" thai 0.79 0.87 0.82 232\n",
"\n",
" accuracy 0.79 1199\n",
" macro avg 0.79 0.79 0.79 1199\n",
"weighted avg 0.79 0.79 0.79 1199\n",
"\n",
"Accuracy (train) for KNN classifier: 73.0% \n",
" precision recall f1-score support\n",
"\n",
" chinese 0.67 0.69 0.68 233\n",
" indian 0.81 0.80 0.80 236\n",
" japanese 0.66 0.84 0.74 250\n",
" korean 0.92 0.53 0.68 248\n",
" thai 0.70 0.80 0.75 232\n",
"\n",
" accuracy 0.73 1199\n",
" macro avg 0.75 0.73 0.73 1199\n",
"weighted avg 0.75 0.73 0.73 1199\n",
"\n",
"Accuracy (train) for SVC: 81.9% \n",
" precision recall f1-score support\n",
"\n",
" chinese 0.73 0.75 0.74 233\n",
" indian 0.90 0.88 0.89 236\n",
" japanese 0.84 0.79 0.81 250\n",
" korean 0.87 0.79 0.83 248\n",
" thai 0.78 0.89 0.83 232\n",
"\n",
" accuracy 0.82 1199\n",
" macro avg 0.82 0.82 0.82 1199\n",
"weighted avg 0.82 0.82 0.82 1199\n",
"\n",
"Accuracy (train) for RFST: 84.8% \n",
" precision recall f1-score support\n",
"\n",
" chinese 0.77 0.79 0.78 233\n",
" indian 0.90 0.92 0.91 236\n",
" japanese 0.89 0.80 0.84 250\n",
" korean 0.87 0.82 0.84 248\n",
" thai 0.81 0.91 0.86 232\n",
"\n",
" accuracy 0.85 1199\n",
" macro avg 0.85 0.85 0.85 1199\n",
"weighted avg 0.85 0.85 0.85 1199\n",
"\n",
"Accuracy (train) for ADA: 69.9% \n",
" precision recall f1-score support\n",
"\n",
" chinese 0.62 0.48 0.54 233\n",
" indian 0.84 0.84 0.84 236\n",
" japanese 0.69 0.57 0.62 250\n",
" korean 0.66 0.81 0.73 248\n",
" thai 0.68 0.79 0.73 232\n",
"\n",
" accuracy 0.70 1199\n",
" macro avg 0.70 0.70 0.69 1199\n",
"weighted avg 0.70 0.70 0.69 1199\n",
"\n"
]
}
],
"source": [
"n_classifiers = len(classifiers)\n",
"\n",
"for index, (name, classifier) in enumerate(classifiers.items()):\n",
" classifier.fit(X_train, np.ravel(y_train))\n",
"\n",
" y_pred = classifier.predict(X_test)\n",
" accuracy = accuracy_score(y_test, y_pred)\n",
" print(\"Accuracy (train) for %s: %0.1f%% \" % (name, accuracy * 100))\n",
" print(classification_report(y_test,y_pred))"
]
} }
], ],
"metadata": { "metadata": {
@ -126,8 +590,8 @@
"hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d"
}, },
"kernelspec": { "kernelspec": {
"name": "python3", "display_name": "Python 3.7.0 64-bit ('3.7')",
"display_name": "Python 3.7.0 64-bit ('3.7')" "name": "python3"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {
@ -139,7 +603,7 @@
"name": "python", "name": "python",
"nbconvert_exporter": "python", "nbconvert_exporter": "python",
"pygments_lexer": "ipython3", "pygments_lexer": "ipython3",
"version": "3.7.0" "version": "3.12.0"
}, },
"metadata": { "metadata": {
"interpreter": { "interpreter": {
@ -149,4 +613,4 @@
}, },
"nbformat": 4, "nbformat": 4,
"nbformat_minor": 4 "nbformat_minor": 4
} }

Loading…
Cancel
Save