|
|
@ -6,250 +6,6 @@
|
|
|
|
"source": [
|
|
|
|
"source": [
|
|
|
|
"# Delicious Asian and Indian Cuisines "
|
|
|
|
"# Delicious Asian and Indian Cuisines "
|
|
|
|
]
|
|
|
|
]
|
|
|
|
},
|
|
|
|
|
|
|
|
{
|
|
|
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
|
|
|
"execution_count": 1,
|
|
|
|
|
|
|
|
"metadata": {},
|
|
|
|
|
|
|
|
"outputs": [],
|
|
|
|
|
|
|
|
"source": [
|
|
|
|
|
|
|
|
"import pandas as pd\n",
|
|
|
|
|
|
|
|
"import matplotlib.pyplot as plt\n",
|
|
|
|
|
|
|
|
"import matplotlib as mpl\n",
|
|
|
|
|
|
|
|
"import numpy as np\n",
|
|
|
|
|
|
|
|
"from imblearn.over_sampling import SMOTE"
|
|
|
|
|
|
|
|
]
|
|
|
|
|
|
|
|
},
|
|
|
|
|
|
|
|
{
|
|
|
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
|
|
|
"execution_count": 3,
|
|
|
|
|
|
|
|
"metadata": {},
|
|
|
|
|
|
|
|
"outputs": [
|
|
|
|
|
|
|
|
{
|
|
|
|
|
|
|
|
"data": {
|
|
|
|
|
|
|
|
"text/html": [
|
|
|
|
|
|
|
|
"<div>\n",
|
|
|
|
|
|
|
|
"<style scoped>\n",
|
|
|
|
|
|
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
|
|
|
|
|
|
" vertical-align: middle;\n",
|
|
|
|
|
|
|
|
" }\n",
|
|
|
|
|
|
|
|
"\n",
|
|
|
|
|
|
|
|
" .dataframe tbody tr th {\n",
|
|
|
|
|
|
|
|
" vertical-align: top;\n",
|
|
|
|
|
|
|
|
" }\n",
|
|
|
|
|
|
|
|
"\n",
|
|
|
|
|
|
|
|
" .dataframe thead th {\n",
|
|
|
|
|
|
|
|
" text-align: right;\n",
|
|
|
|
|
|
|
|
" }\n",
|
|
|
|
|
|
|
|
"</style>\n",
|
|
|
|
|
|
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
|
|
|
|
|
|
" <thead>\n",
|
|
|
|
|
|
|
|
" <tr style=\"text-align: right;\">\n",
|
|
|
|
|
|
|
|
" <th></th>\n",
|
|
|
|
|
|
|
|
" <th>Unnamed: 0</th>\n",
|
|
|
|
|
|
|
|
" <th>cuisine</th>\n",
|
|
|
|
|
|
|
|
" <th>almond</th>\n",
|
|
|
|
|
|
|
|
" <th>angelica</th>\n",
|
|
|
|
|
|
|
|
" <th>anise</th>\n",
|
|
|
|
|
|
|
|
" <th>anise_seed</th>\n",
|
|
|
|
|
|
|
|
" <th>apple</th>\n",
|
|
|
|
|
|
|
|
" <th>apple_brandy</th>\n",
|
|
|
|
|
|
|
|
" <th>apricot</th>\n",
|
|
|
|
|
|
|
|
" <th>armagnac</th>\n",
|
|
|
|
|
|
|
|
" <th>...</th>\n",
|
|
|
|
|
|
|
|
" <th>whiskey</th>\n",
|
|
|
|
|
|
|
|
" <th>white_bread</th>\n",
|
|
|
|
|
|
|
|
" <th>white_wine</th>\n",
|
|
|
|
|
|
|
|
" <th>whole_grain_wheat_flour</th>\n",
|
|
|
|
|
|
|
|
" <th>wine</th>\n",
|
|
|
|
|
|
|
|
" <th>wood</th>\n",
|
|
|
|
|
|
|
|
" <th>yam</th>\n",
|
|
|
|
|
|
|
|
" <th>yeast</th>\n",
|
|
|
|
|
|
|
|
" <th>yogurt</th>\n",
|
|
|
|
|
|
|
|
" <th>zucchini</th>\n",
|
|
|
|
|
|
|
|
" </tr>\n",
|
|
|
|
|
|
|
|
" </thead>\n",
|
|
|
|
|
|
|
|
" <tbody>\n",
|
|
|
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
|
|
|
" <th>0</th>\n",
|
|
|
|
|
|
|
|
" <td>65</td>\n",
|
|
|
|
|
|
|
|
" <td>indian</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" </tr>\n",
|
|
|
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
|
|
|
" <th>1</th>\n",
|
|
|
|
|
|
|
|
" <td>66</td>\n",
|
|
|
|
|
|
|
|
" <td>indian</td>\n",
|
|
|
|
|
|
|
|
" <td>1</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" </tr>\n",
|
|
|
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
|
|
|
" <th>2</th>\n",
|
|
|
|
|
|
|
|
" <td>67</td>\n",
|
|
|
|
|
|
|
|
" <td>indian</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" </tr>\n",
|
|
|
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
|
|
|
" <th>3</th>\n",
|
|
|
|
|
|
|
|
" <td>68</td>\n",
|
|
|
|
|
|
|
|
" <td>indian</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" </tr>\n",
|
|
|
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
|
|
|
" <th>4</th>\n",
|
|
|
|
|
|
|
|
" <td>69</td>\n",
|
|
|
|
|
|
|
|
" <td>indian</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" <td>1</td>\n",
|
|
|
|
|
|
|
|
" <td>0</td>\n",
|
|
|
|
|
|
|
|
" </tr>\n",
|
|
|
|
|
|
|
|
" </tbody>\n",
|
|
|
|
|
|
|
|
"</table>\n",
|
|
|
|
|
|
|
|
"<p>5 rows × 385 columns</p>\n",
|
|
|
|
|
|
|
|
"</div>"
|
|
|
|
|
|
|
|
],
|
|
|
|
|
|
|
|
"text/plain": [
|
|
|
|
|
|
|
|
" Unnamed: 0 cuisine almond angelica anise anise_seed apple \\\n",
|
|
|
|
|
|
|
|
"0 65 indian 0 0 0 0 0 \n",
|
|
|
|
|
|
|
|
"1 66 indian 1 0 0 0 0 \n",
|
|
|
|
|
|
|
|
"2 67 indian 0 0 0 0 0 \n",
|
|
|
|
|
|
|
|
"3 68 indian 0 0 0 0 0 \n",
|
|
|
|
|
|
|
|
"4 69 indian 0 0 0 0 0 \n",
|
|
|
|
|
|
|
|
"\n",
|
|
|
|
|
|
|
|
" apple_brandy apricot armagnac ... whiskey white_bread white_wine \\\n",
|
|
|
|
|
|
|
|
"0 0 0 0 ... 0 0 0 \n",
|
|
|
|
|
|
|
|
"1 0 0 0 ... 0 0 0 \n",
|
|
|
|
|
|
|
|
"2 0 0 0 ... 0 0 0 \n",
|
|
|
|
|
|
|
|
"3 0 0 0 ... 0 0 0 \n",
|
|
|
|
|
|
|
|
"4 0 0 0 ... 0 0 0 \n",
|
|
|
|
|
|
|
|
"\n",
|
|
|
|
|
|
|
|
" whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n",
|
|
|
|
|
|
|
|
"0 0 0 0 0 0 0 0 \n",
|
|
|
|
|
|
|
|
"1 0 0 0 0 0 0 0 \n",
|
|
|
|
|
|
|
|
"2 0 0 0 0 0 0 0 \n",
|
|
|
|
|
|
|
|
"3 0 0 0 0 0 0 0 \n",
|
|
|
|
|
|
|
|
"4 0 0 0 0 0 1 0 \n",
|
|
|
|
|
|
|
|
"\n",
|
|
|
|
|
|
|
|
"[5 rows x 385 columns]"
|
|
|
|
|
|
|
|
]
|
|
|
|
|
|
|
|
},
|
|
|
|
|
|
|
|
"execution_count": 3,
|
|
|
|
|
|
|
|
"metadata": {},
|
|
|
|
|
|
|
|
"output_type": "execute_result"
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
],
|
|
|
|
|
|
|
|
"source": [
|
|
|
|
|
|
|
|
"df = pd.read_csv('../data/cuisines.csv')\n",
|
|
|
|
|
|
|
|
"df.head()"
|
|
|
|
|
|
|
|
]
|
|
|
|
|
|
|
|
},
|
|
|
|
|
|
|
|
{
|
|
|
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
|
|
|
"execution_count": 4,
|
|
|
|
|
|
|
|
"metadata": {},
|
|
|
|
|
|
|
|
"outputs": [
|
|
|
|
|
|
|
|
{
|
|
|
|
|
|
|
|
"name": "stdout",
|
|
|
|
|
|
|
|
"output_type": "stream",
|
|
|
|
|
|
|
|
"text": [
|
|
|
|
|
|
|
|
"<class 'pandas.core.frame.DataFrame'>\n",
|
|
|
|
|
|
|
|
"RangeIndex: 2448 entries, 0 to 2447\n",
|
|
|
|
|
|
|
|
"Columns: 385 entries, Unnamed: 0 to zucchini\n",
|
|
|
|
|
|
|
|
"dtypes: int64(384), object(1)\n",
|
|
|
|
|
|
|
|
"memory usage: 7.2+ MB\n"
|
|
|
|
|
|
|
|
]
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
],
|
|
|
|
|
|
|
|
"source": [
|
|
|
|
|
|
|
|
"df.info()"
|
|
|
|
|
|
|
|
]
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
],
|
|
|
|
],
|
|
|
|
"metadata": {
|
|
|
|
"metadata": {
|
|
|
|