improve zh-cn translation (#318)

* Update README.zh-cn.md

* Update README.zh-cn.md

* Update README.zh-cn.md

* upd

* remove :
pull/328/head
Flex Zhong 3 years ago committed by GitHub
parent 2f69359deb
commit 3996754751
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -18,8 +18,8 @@
在开始本课程之前,你需要设置计算机能在本地运行 Jupyter Notebooks。
- **按照这些视频里的讲解配置你的计算机**。了解有关如何在此[视频集](https://www.youtube.com/playlist?list=PLlrxD0HtieHhS8VzuMCfQD4uJ9yne1mE6)中设置计算机的更多信息。
- **学习Python**. 还建议你对[Python](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-15963-cxa)我们在本课程中使用的一种对数据科学家有用的编程语言,有一个基本的了解
- **学习Node.js和JavaScript**。在本课程中我们在构建web应用程序时也使用过几次JavaScript因此你需要有[node](https://nodejs.org)和[npm](https://www.npmjs.com/) 以及[Visual Studio Code](https://code.visualstudio.com/)用于Python和JavaScript开发。
- **学习 Python**。 还建议你对 [Python](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-15963-cxa) 有一个基本的了解。这是我们在本课程中使用的一种对数据科学家有用的编程语言。
- **学习 Node.js 和 JavaScript**。在本课程中,我们在构建 web 应用程序时也使用过几次 JavaScript因此你需要有 [Node.js](https://nodejs.org) 和 [npm](https://www.npmjs.com/) 以及 [Visual Studio Code](https://code.visualstudio.com/) 用于 Python 和 JavaScript 开发。
- **创建 GitHub 帐户**。既然你在 [GitHub](https://github.com) 上找到我们,你可能已经有了一个帐户,但如果没有,请创建一个帐户,然后 fork 此课程自己使用(也给我们一颗星星吧😊)
- **探索 Scikit-learn**. 熟悉 [Scikit-learn]([https://scikit-learn.org/stable/user_guide.html),我们在这些课程中引用的一组 ML 库。

@ -26,17 +26,17 @@ Alan Turing一个真正杰出的人[在2019年被公众投票选出](https
## 1956: 达特茅斯夏季研究项目
“达特茅斯夏季人工智能研究项目是人工智能领域的一个开创性事件,”正是在这里,人们创造了“人工智能”一词([来源](https://250.dartmouth.edu/highlights/artificial-intelligence-ai-coined-dartmouth))
“达特茅斯夏季人工智能研究项目是人工智能领域的一个开创性事件,”正是在这里,人们创造了“人工智能”一词([来源](https://250.dartmouth.edu/highlights/artificial-intelligence-ai-coined-dartmouth)
> 原则上,学习的每个方面或智能的任何其他特征都可以被精确地描述,以至于可以用机器来模拟它。
首席研究员、数学教授 John McCarthy 希望“基于这样一种猜想,即学习的每个方面或智能的任何其他特征原则上都可以如此精确地描述,以至于可以制造出一台机器来模拟它。” 参与者包括该领域的另一位杰出人物 Marvin Minsky。
研讨会被认为发起并鼓励了一些讨论,包括“符号方法的兴起、专注于有限领域的系统(早期专家系统),以及演绎系统与归纳系统的对比。”([来源](https://wikipedia.org/wiki/Dartmouth_workshop))
研讨会被认为发起并鼓励了一些讨论,包括“符号方法的兴起、专注于有限领域的系统(早期专家系统),以及演绎系统与归纳系统的对比。”[来源](https://wikipedia.org/wiki/Dartmouth_workshop)
## 1956 - 1974: “黄金岁月”
从20世纪50年代到70年代中期乐观情绪高涨希望人工智能能够解决许多问题。1967Marvin Minsky自信地说“一代人之内。。。创造人工智能的问题将得到实质性的解决。”MinskyMarvin1967《计算有限和无限机器》新泽西州恩格伍德克利夫斯Prentice Hall
20 世纪 50 年代到 70 年代中期乐观情绪高涨希望人工智能能够解决许多问题。1967Marvin Minsky 自信地说,“一代人之内...创造人工智能的问题将得到实质性的解决。”MinskyMarvin1967《计算有限和无限机器》新泽西州恩格伍德克利夫斯Prentice Hall
自然语言处理研究蓬勃发展,搜索被提炼并变得更加强大,创造了“微观世界”的概念,在这个概念中,简单的任务是用简单的语言指令完成的。
@ -73,7 +73,7 @@ Alan Turing一个真正杰出的人[在2019年被公众投票选出](https
## 1980s 专家系统
随着这个领域的发展它对商业的好处变得越来越明显在20世纪80年代专家系统的泛滥也是如此。“专家系统是首批真正成功的人工智能 (AI) 软件形式之一。” ([来源](https://wikipedia.org/wiki/Expert_system))
随着这个领域的发展,它对商业的好处变得越来越明显,在 20 世纪 80 年代,‘专家系统’的泛滥也是如此。“专家系统是首批真正成功的人工智能 (AI) 软件形式之一。” [来源](https://wikipedia.org/wiki/Expert_system)
这种类型的系统实际上是混合系统,部分由定义业务需求的规则引擎和利用规则系统推断新事实的推理引擎组成。
@ -89,7 +89,7 @@ Alan Turing一个真正杰出的人[在2019年被公众投票选出](https
## 现在
今天机器学习和人工智能几乎触及我们生活的每一个部分。这个时代要求仔细了解这些算法对人类生活的风险和潜在影响。正如微软的Brad Smith所言“信息技术引发的问题触及隐私和言论自由等基本人权保护的核心。这些问题加重了制造这些产品的科技公司的责任。在我们看来它们还呼吁政府进行深思熟虑的监管并围绕可接受的用途制定规范”([来源](https://www.technologyreview.com/2019/12/18/102365/the-future-of-ais-impact-on-society/))
今天,机器学习和人工智能几乎触及我们生活的每一个部分。这个时代要求仔细了解这些算法对人类生活的风险和潜在影响。正如微软的 Brad Smith 所言,“信息技术引发的问题触及隐私和言论自由等基本人权保护的核心。这些问题加重了制造这些产品的科技公司的责任。在我们看来,它们还呼吁政府进行深思熟虑的监管,并围绕可接受的用途制定规范”[来源](https://www.technologyreview.com/2019/12/18/102365/the-future-of-ais-impact-on-society/)
未来的情况还有待观察,但了解这些计算机系统以及它们运行的软件和算法是很重要的。我们希望这门课程能帮助你更好的理解,以便你自己决定。

@ -1,6 +1,6 @@
# 机器学习入门
课程的本章节将为您介绍机器学习领域背后的基本概念、什么是机器学习,并学习它的历史以及曾为此做出贡献的技术研究者。让我们一起开始探索机器学习的全新世界吧!
课程的本章节将为您介绍机器学习领域背后的基本概念、什么是机器学习,并学习它的历史以及曾为此做出贡献的技术研究者。让我们一起开始探索机器学习的全新世界吧!
![globe](../images/globe.jpg)
> 图片由 <a href="https://unsplash.com/@bill_oxford?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Bill Oxford</a>提供,来自 <a href="https://unsplash.com/s/photos/globe?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Unsplash</a>

@ -189,9 +189,11 @@ s1 tcT细胞一种白细胞
恭喜,你构建了第一个线性回归模型,使用它创建了预测,并将其显示在绘图中!
---
## 🚀挑战
从这个数据集中绘制一个不同的变量。提示:编辑这一行:`X = X[:, np.newaxis, 2]`。鉴于此数据集的目标,你能够发现糖尿病作为一种疾病的进展情况吗?
## [课后测](https://white-water-09ec41f0f.azurestaticapps.net/quiz/10/)
## 复习与自学

@ -35,6 +35,7 @@
你对这些数据有什么看法?你已经看到了无法理解的字符串、数字、空格和奇怪值的混合体。
你可以使用回归技术对这些数据提出什么问题?“预测给定月份内待售南瓜的价格”怎么样?再次查看数据,你需要进行一些更改才能创建任务所需的数据结构。
## 练习 - 分析南瓜数据
让我们使用 [Pandas](https://pandas.pydata.org/)“Python 数据分析”的意思)一个非常有用的工具,用于分析和准备南瓜数据。

@ -2,7 +2,9 @@
![线性与多项式回归信息图](../images/linear-polynomial.png)
> 作者 [Dasani Madipalli](https://twitter.com/dasani_decoded)
## [课前测](https://white-water-09ec41f0f.azurestaticapps.net/quiz/13/)
### 介绍
到目前为止,你已经通过从我们将在本课程中使用的南瓜定价数据集收集的样本数据探索了什么是回归。你还使用 Matplotlib 对其进行了可视化。
@ -145,6 +147,7 @@ lin_pumpkins
X = lin_pumpkins.values[:, :1]
y = lin_pumpkins.values[:, 1:2]
```
✅ 这里发生了什么?你正在使用 [Python slice notation](https://stackoverflow.com/questions/509211/understanding-slice-notation/509295#509295) 来创建数组来填充`X`和`y`。
2. 接下来,开始回归模型构建例程:
@ -181,6 +184,7 @@ lin_pumpkins
plt.show()
```
![散点图显示包装与价格的关系](../images/linear.png)
4. 针对假设的品种测试模型:
@ -212,6 +216,7 @@ lin_pumpkins
多项式回归创建一条曲线以更好地拟合非线性数据。
1. 让我们重新创建一个填充了原始南瓜数据片段的dataframe
```python
new_columns = ['Variety', 'Package', 'City', 'Month', 'Price']
poly_pumpkins = new_pumpkins.drop([c for c in new_pumpkins.columns if c not in new_columns], axis='columns')
@ -227,6 +232,7 @@ lin_pumpkins
corr = poly_pumpkins.corr()
corr.style.background_gradient(cmap='coolwarm')
```
这段代码创建了一个热图:
![显示数据相关性的热图](../images/heatmap.png)
@ -306,6 +312,7 @@ Scikit-learn包含一个用于构建多项式回归模型的有用API - `make_pi
```python
pipeline.predict( np.array([ [2.75] ]) )
```
你会得到这样的预测:
```output
@ -317,6 +324,7 @@ Scikit-learn包含一个用于构建多项式回归模型的有用API - `make_pi
🏆 干得不错!你在一节课中创建了两个回归模型。在回归的最后一节中,你将了解逻辑回归以确定类别。
---
## 🚀挑战
在此 notebook 中测试几个不同的变量,以查看相关性与模型准确性的对应关系。

@ -2,6 +2,7 @@
![逻辑与线性回归信息图](../images/logistic-linear.png)
> 作者 [Dasani Madipalli](https://twitter.com/dasani_decoded)
## [课前测](https://white-water-09ec41f0f.azurestaticapps.net/quiz/15/)
## 介绍
@ -39,6 +40,7 @@
![南瓜分类模型](../images/pumpkin-classifier.png)
> 作者 [Dasani Madipalli](https://twitter.com/dasani_decoded)
### 其他分类
还有其他类型的逻辑回归,包括多项和有序:
@ -249,6 +251,7 @@ Seaborn提供了一些巧妙的方法来可视化你的数据。例如你可
🎓 加权平均值:计算每个标签的平均指标,通过按支持度(每个标签的真实实例数)加权来考虑标签不平衡。
✅ 如果你想让你的模型减少假阴性的数量,你能想出应该关注哪个指标吗?
## 可视化该模型的 ROC 曲线
这不是一个糟糕的模型;它的准确率在 80% 范围内,因此理想情况下,你可以使用它来预测给定一组变量的南瓜颜色。
@ -264,6 +267,7 @@ fpr, tpr, thresholds = roc_curve(y_test, y_scores[:,1])
sns.lineplot([0, 1], [0, 1])
sns.lineplot(fpr, tpr)
```
再次使用 Seaborn绘制模型的[接收操作特性](https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html?highlight=roc)或 ROC。 ROC 曲线通常用于根据分类器的真假阳性来了解分类器的输出。“ROC 曲线通常具有 Y 轴上的真阳性率和 X 轴上的假阳性率。” 因此,曲线的陡度以及中点线与曲线之间的空间很重要:你需要一条快速向上并越过直线的曲线。在我们的例子中,一开始就有误报,然后这条线正确地向上和重复:
![ROC](../images/ROC.png)
@ -274,10 +278,13 @@ sns.lineplot(fpr, tpr)
auc = roc_auc_score(y_test,y_scores[:,1])
print(auc)
```
结果是 `0.6976998904709748`。 鉴于 AUC 的范围从 0 到 1你需要一个高分因为预测 100% 正确的模型的 AUC 为 1在这种情况下模型_相当不错_。
在以后的分类课程中,你将学习如何迭代以提高模型的分数。但是现在,恭喜!你已经完成了这些回归课程!
---
## 🚀挑战
关于逻辑回归,还有很多东西需要解开!但最好的学习方法是实验。找到适合此类分析的数据集并用它构建模型。你学到了什么?小贴士:尝试 [Kaggle](https://kaggle.com) 获取有趣的数据集。

@ -330,7 +330,7 @@ In a professional setting, you can see how good communication is necessary betwe
---
## 🚀 Challenge:
## 🚀 Challenge
Instead of working in a notebook and importing the model to the Flask app, you could train the model right within the Flask app! Try converting your Python code in the notebook, perhaps after your data is cleaned, to train the model from within the app on a route called `train`. What are the pros and cons of pursuing this method?

@ -330,7 +330,7 @@ Flask와 pickled 모델과 같이, 모델을 사용하는 이 방식은, 비교
---
## 🚀 도전:
## 🚀 도전
노트북에서 작성하고 Flask 앱에서 모델을 가져오는 대신, Flask 앱에서 바로 모델을 훈련할 수 있습니다! 어쩌면 데이터를 정리하고, 노트북에서 Python 코드로 변환해서, `train`이라고 불리는 라우터로 앱에서 모델을 훈련합니다. 이러한 방식을 추구했을 때 장점과 단점은 무엇인가요?

@ -25,8 +25,8 @@
- **模型放在哪里?** 在云端还是本地?
- **离线支持**。该应用程序是否必须离线工作?
- **使用什么技术来训练模型?** 所选的技术可能会影响你需要使用的工具。
- **使用Tensor flow**。例如如果你正在使用TensorFlow训练模型则该生态系统提供了使用[TensorFlow.js](https://www.tensorflow.org/js/)转换TensorFlow模型以便在Web应用程序中使用的能力。
- **使用 PyTorch**。如果你使用[PyTorch](https://pytorch.org/)等库构建模型,则可以选择将其导出到[ONNX](https://onnx.ai/)(开放神经网络交换)格式,用于可以使用 [Onnx Runtime](https://www.onnxruntime.ai/)的JavaScript Web 应用程序。此选项将在Scikit-learn-trained模型的未来课程中进行探讨。
- **使用 TensorFlow**。例如,如果你正在使用 TensorFlow 训练模型,则该生态系统提供了使用 [TensorFlow.js](https://www.tensorflow.org/js/) 转换 TensorFlow 模型以便在Web应用程序中使用的能力。
- **使用 PyTorch**。如果你使用 [PyTorch](https://pytorch.org/) 等库构建模型,则可以选择将其导出到 [ONNX](https://onnx.ai/)(开放神经网络交换)格式,用于可以使用 [Onnx Runtime](https://www.onnxruntime.ai/)的JavaScript Web 应用程序。此选项将在 Scikit-learn-trained 模型的未来课程中进行探讨。
- **使用 Lobe.ai 或 Azure 自定义视觉**。如果你使用 ML SaaS软件即服务系统例如 [Lobe.ai](https://lobe.ai/) 或 [Azure Custom Vision](https://azure.microsoft.com/services/cognitive-services/custom-vision-service/?WT.mc_id=academic-15963-cxa) 来训练模型这种类型的软件提供了为许多平台导出模型的方法包括构建一个定制A PI供在线应用程序在云中查询。
你还有机会构建一个完整的 Flask Web 应用程序,该应用程序能够在 Web浏览器中训练模型本身。这也可以在 JavaScript 上下文中使用 TensorFlow.js 来完成。
@ -39,7 +39,7 @@
✅ 什么是 [Flask](https://palletsprojects.com/p/flask/) Flask 被其创建者定义为“微框架”,它提供了使用 Python 和模板引擎构建网页的 Web 框架的基本功能。看看[本学习单元](https://docs.microsoft.com/learn/modules/python-flask-build-ai-web-app?WT.mc_id=academic-15963-cxa)练习使用 Flask 构建应用程序。
✅ 什么是[Pickle](https://docs.python.org/3/library/pickle.html) Pickle🥒是一 Python模块用于序列化和反序列化 Python对象结构。当你“pickle”一个模型时你将其结构序列化或展平以在 Web上使用。小心pickle本质上不是安全的所以如果提示“un-pickle”文件请小心。生产的文件具有后缀`.pkl`。
✅ 什么是 [Pickle](https://docs.python.org/3/library/pickle.html) Pickle🥒是一 Python 模块,用于序列化和反序列化 Python 对象结构。当你“pickle”一个模型时你将其结构序列化或展平以在 Web 上使用。小心pickle 本质上不是安全的所以如果提示“un-pickle”文件请小心。生产的文件具有后缀 `.pkl`
## 练习 - 清理你的数据
@ -159,7 +159,7 @@ print(model.predict([[50,44,-12]]))
1. 首先在你的 _ufo-model.pkl_ 文件所在的 _notebook.ipynb_ 文件旁边创建一个名为 **web-app** 的文件夹。
2. 在该文件夹中创建另外三个文件夹:**static**,其中有文件夹**css**和**templates`**。 你现在应该拥有以下文件和目录
2. 在该文件夹中创建另外三个文件夹:**static**,其中有文件夹 **css** **templates**。 你现在应该拥有以下文件和目录
```output
web-app/
@ -195,7 +195,7 @@ print(model.predict([[50,44,-12]]))
6. 现在,你已准备好创建另外三个文件来完成应用程序:
1. 在根目录中创建**app.py**
1. 在根目录中创建 **app.py**
2. 在 _templates_ 目录中创建**index.html**。
3. 在 _static/css_ 目录中创建**styles.css**。
@ -330,7 +330,7 @@ print(model.predict([[50,44,-12]]))
---
## 🚀 挑战:
## 🚀 挑战
你可以在 Flask 应用程序中训练模型,而不是在 notebook 上工作并将模型导入 Flask 应用程序!尝试在 notebook 中转换 Python 代码,可能是在清除数据之后,从应用程序中的一个名为 `train` 的路径训练模型。采用这种方法的利弊是什么?

Loading…
Cancel
Save