|
|
|
@ -28,6 +28,11 @@ Open the _/working_ folder in this lesson and find the _notebook.ipynb_ file.[^2
|
|
|
|
|
|
|
|
|
|
1. Run the notebook and import the necessary libraries: [^2]
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
import sys
|
|
|
|
|
sys.path.append('../../')
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
import os
|
|
|
|
|
import warnings
|
|
|
|
@ -42,13 +47,13 @@ Open the _/working_ folder in this lesson and find the _notebook.ipynb_ file.[^2
|
|
|
|
|
from common.utils import load_data, mape
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
4. Load the data from the `/data/energy.csv` file into a Pandas dataframe and take a look: [^2]
|
|
|
|
|
2. Load the data from the `/data/energy.csv` file into a Pandas dataframe and take a look: [^2]
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
energy = load_data('./data')[['load']]
|
|
|
|
|
energy = load_data('../../data')[['load']]
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
5. Plot all the available energy data from January 2012 to December 2014: [^2]
|
|
|
|
|
3. Plot all the available energy data from January 2012 to December 2014: [^2]
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12)
|
|
|
|
|