update ARIMA README with fixes for HORIZON+1

pull/293/head
Alfredo Deza 4 years ago
parent 1cea15a248
commit 0c9a9b0389

@ -261,7 +261,7 @@ Walk-forward validation is the gold standard of time series model evaluation and
for t in range(test_ts.shape[0]):
model = SARIMAX(endog=history, order=order, seasonal_order=seasonal_order)
model_fit = model.fit()
yhat = model_fit.forecast(steps = HORIZON)
yhat = model_fit.forecast(steps = HORIZON+1)
predictions.append(yhat)
obs = list(test_ts.iloc[t])
# move the training window
@ -287,8 +287,8 @@ Walk-forward validation is the gold standard of time series model evaluation and
1. Compare the predictions to the actual load:
```python
eval_df = pd.DataFrame(predictions, columns=['t+'+str(t) for t in range(1, HORIZON+1)])
eval_df['timestamp'] = test.index[0:len(test.index)-HORIZON+1]
eval_df = pd.DataFrame(predictions, columns=['t+'+str(t) for t in range(1, HORIZON+2)])
eval_df['timestamp'] = test.index[0:len(test.index)-HORIZON]
eval_df = pd.melt(eval_df, id_vars='timestamp', value_name='prediction', var_name='h')
eval_df['actual'] = np.array(np.transpose(test_ts)).ravel()
eval_df[['prediction', 'actual']] = scaler.inverse_transform(eval_df[['prediction', 'actual']])

Loading…
Cancel
Save