You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ML-For-Beginners/4-Classification/3-Classifiers-2/solution/notebook.ipynb

291 lines
16 KiB

{
"cells": [
{
"source": [
3 years ago
"# Build More Classification Models"
],
"cell_type": "markdown",
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" Unnamed: 0 cuisine almond angelica anise anise_seed apple \\\n",
"0 0 indian 0 0 0 0 0 \n",
"1 1 indian 1 0 0 0 0 \n",
"2 2 indian 0 0 0 0 0 \n",
"3 3 indian 0 0 0 0 0 \n",
"4 4 indian 0 0 0 0 0 \n",
"\n",
" apple_brandy apricot armagnac ... whiskey white_bread white_wine \\\n",
"0 0 0 0 ... 0 0 0 \n",
"1 0 0 0 ... 0 0 0 \n",
"2 0 0 0 ... 0 0 0 \n",
"3 0 0 0 ... 0 0 0 \n",
"4 0 0 0 ... 0 0 0 \n",
"\n",
" whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n",
"0 0 0 0 0 0 0 0 \n",
"1 0 0 0 0 0 0 0 \n",
"2 0 0 0 0 0 0 0 \n",
"3 0 0 0 0 0 0 0 \n",
"4 0 0 0 0 0 1 0 \n",
"\n",
"[5 rows x 382 columns]"
],
"text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>Unnamed: 0</th>\n <th>cuisine</th>\n <th>almond</th>\n <th>angelica</th>\n <th>anise</th>\n <th>anise_seed</th>\n <th>apple</th>\n <th>apple_brandy</th>\n <th>apricot</th>\n <th>armagnac</th>\n <th>...</th>\n <th>whiskey</th>\n <th>white_bread</th>\n <th>white_wine</th>\n <th>whole_grain_wheat_flour</th>\n <th>wine</th>\n <th>wood</th>\n <th>yam</th>\n <th>yeast</th>\n <th>yogurt</th>\n <th>zucchini</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td>0</td>\n <td>indian</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>...</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n </tr>\n <tr>\n <th>1</th>\n <td>1</td>\n <td>indian</td>\n <td>1</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>...</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n </tr>\n <tr>\n <th>2</th>\n <td>2</td>\n <td>indian</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>...</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n </tr>\n <tr>\n <th>3</th>\n <td>3</td>\n <td>indian</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>...</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n </tr>\n <tr>\n <th>4</th>\n <td>4</td>\n <td>indian</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>...</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>1</td>\n <td>0</td>\n </tr>\n </tbody>\n</table>\n<p>5 rows × 382 columns</p>\n</div>"
},
"metadata": {},
"execution_count": 1
}
],
"source": [
"import pandas as pd\n",
"cuisines_df = pd.read_csv(\"../../data/cleaned_cuisine.csv\")\n",
"cuisines_df.head()"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"0 indian\n",
"1 indian\n",
"2 indian\n",
"3 indian\n",
"4 indian\n",
"Name: cuisine, dtype: object"
]
},
"metadata": {},
"execution_count": 2
}
],
"source": [
"cuisines_label_df = cuisines_df['cuisine']\n",
"cuisines_label_df.head()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" almond angelica anise anise_seed apple apple_brandy apricot \\\n",
"0 0 0 0 0 0 0 0 \n",
"1 1 0 0 0 0 0 0 \n",
"2 0 0 0 0 0 0 0 \n",
"3 0 0 0 0 0 0 0 \n",
"4 0 0 0 0 0 0 0 \n",
"\n",
" armagnac artemisia artichoke ... whiskey white_bread white_wine \\\n",
"0 0 0 0 ... 0 0 0 \n",
"1 0 0 0 ... 0 0 0 \n",
"2 0 0 0 ... 0 0 0 \n",
"3 0 0 0 ... 0 0 0 \n",
"4 0 0 0 ... 0 0 0 \n",
"\n",
" whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n",
"0 0 0 0 0 0 0 0 \n",
"1 0 0 0 0 0 0 0 \n",
"2 0 0 0 0 0 0 0 \n",
"3 0 0 0 0 0 0 0 \n",
"4 0 0 0 0 0 1 0 \n",
"\n",
"[5 rows x 380 columns]"
],
"text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>almond</th>\n <th>angelica</th>\n <th>anise</th>\n <th>anise_seed</th>\n <th>apple</th>\n <th>apple_brandy</th>\n <th>apricot</th>\n <th>armagnac</th>\n <th>artemisia</th>\n <th>artichoke</th>\n <th>...</th>\n <th>whiskey</th>\n <th>white_bread</th>\n <th>white_wine</th>\n <th>whole_grain_wheat_flour</th>\n <th>wine</th>\n <th>wood</th>\n <th>yam</th>\n <th>yeast</th>\n <th>yogurt</th>\n <th>zucchini</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>...</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n </tr>\n <tr>\n <th>1</th>\n <td>1</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>...</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n </tr>\n <tr>\n <th>2</th>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>...</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n </tr>\n <tr>\n <th>3</th>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>...</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n </tr>\n <tr>\n <th>4</th>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>...</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>1</td>\n <td>0</td>\n </tr>\n </tbody>\n</table>\n<p>5 rows × 380 columns</p>\n</div>"
},
"metadata": {},
"execution_count": 3
}
],
"source": [
"cuisines_feature_df = cuisines_df.drop(['Unnamed: 0', 'cuisine'], axis=1)\n",
"cuisines_feature_df.head()"
]
},
3 years ago
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Try different classifiers"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
3 years ago
"from sklearn.neighbors import KNeighborsClassifier\n",
"from sklearn.linear_model import LogisticRegression\n",
"from sklearn.svm import SVC\n",
3 years ago
"from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier\n",
"from sklearn.model_selection import train_test_split, cross_val_score\n",
"from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report, precision_recall_curve\n",
"import numpy as np"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"X_train, X_test, y_train, y_test = train_test_split(cuisines_feature_df, cuisines_label_df, test_size=0.3)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
3 years ago
"\n",
"C = 10\n",
"# Create different classifiers.\n",
"classifiers = {\n",
" 'Linear SVC': SVC(kernel='linear', C=C, probability=True,random_state=0),\n",
" 'KNN classifier': KNeighborsClassifier(C),\n",
" 'SVC': SVC(),\n",
" 'RFST': RandomForestClassifier(n_estimators=100),\n",
" 'ADA': AdaBoostClassifier(n_estimators=100)\n",
" \n",
"}\n"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Accuracy (train) for Linear SVC: 76.4% \n",
3 years ago
" precision recall f1-score support\n",
"\n",
" chinese 0.64 0.66 0.65 242\n",
" indian 0.91 0.86 0.89 236\n",
" japanese 0.72 0.73 0.73 245\n",
" korean 0.83 0.75 0.79 234\n",
" thai 0.75 0.82 0.78 242\n",
3 years ago
"\n",
" accuracy 0.76 1199\n",
" macro avg 0.77 0.76 0.77 1199\n",
"weighted avg 0.77 0.76 0.77 1199\n",
3 years ago
"\n",
"Accuracy (train) for KNN classifier: 70.7% \n",
3 years ago
" precision recall f1-score support\n",
"\n",
" chinese 0.65 0.63 0.64 242\n",
" indian 0.84 0.81 0.82 236\n",
" japanese 0.60 0.81 0.69 245\n",
" korean 0.89 0.53 0.67 234\n",
" thai 0.69 0.75 0.72 242\n",
3 years ago
"\n",
" accuracy 0.71 1199\n",
" macro avg 0.73 0.71 0.71 1199\n",
"weighted avg 0.73 0.71 0.71 1199\n",
3 years ago
"\n",
"Accuracy (train) for SVC: 80.1% \n",
3 years ago
" precision recall f1-score support\n",
"\n",
" chinese 0.71 0.69 0.70 242\n",
" indian 0.92 0.92 0.92 236\n",
" japanese 0.77 0.78 0.77 245\n",
" korean 0.87 0.77 0.82 234\n",
" thai 0.75 0.86 0.80 242\n",
3 years ago
"\n",
" accuracy 0.80 1199\n",
" macro avg 0.80 0.80 0.80 1199\n",
"weighted avg 0.80 0.80 0.80 1199\n",
3 years ago
"\n",
"Accuracy (train) for RFST: 82.8% \n",
3 years ago
" precision recall f1-score support\n",
"\n",
" chinese 0.80 0.75 0.77 242\n",
" indian 0.90 0.91 0.90 236\n",
" japanese 0.82 0.78 0.80 245\n",
" korean 0.85 0.82 0.83 234\n",
" thai 0.78 0.89 0.83 242\n",
3 years ago
"\n",
" accuracy 0.83 1199\n",
" macro avg 0.83 0.83 0.83 1199\n",
"weighted avg 0.83 0.83 0.83 1199\n",
"\n",
"Accuracy (train) for ADA: 71.1% \n",
3 years ago
" precision recall f1-score support\n",
"\n",
" chinese 0.60 0.57 0.58 242\n",
" indian 0.87 0.84 0.86 236\n",
" japanese 0.71 0.60 0.65 245\n",
" korean 0.68 0.78 0.72 234\n",
" thai 0.70 0.78 0.74 242\n",
3 years ago
"\n",
" accuracy 0.71 1199\n",
" macro avg 0.71 0.71 0.71 1199\n",
"weighted avg 0.71 0.71 0.71 1199\n",
3 years ago
"\n"
]
}
],
"source": [
3 years ago
"n_classifiers = len(classifiers)\n",
"\n",
"for index, (name, classifier) in enumerate(classifiers.items()):\n",
" classifier.fit(X_train, np.ravel(y_train))\n",
"\n",
" y_pred = classifier.predict(X_test)\n",
" accuracy = accuracy_score(y_test, y_pred)\n",
" print(\"Accuracy (train) for %s: %0.1f%% \" % (name, accuracy * 100))\n",
" print(classification_report(y_test,y_pred))"
]
}
],
"metadata": {
"interpreter": {
"hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d"
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3.7.0 64-bit ('3.7')"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.0"
},
"metadata": {
"interpreter": {
"hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d"
}
}
},
"nbformat": 4,
"nbformat_minor": 4
}