|
|
|
@ -0,0 +1,242 @@
|
|
|
|
|
{
|
|
|
|
|
"cells": [
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "markdown",
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"source": [
|
|
|
|
|
"# Build Classification Model"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": 1,
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [
|
|
|
|
|
{
|
|
|
|
|
"output_type": "execute_result",
|
|
|
|
|
"data": {
|
|
|
|
|
"text/plain": [
|
|
|
|
|
" Unnamed: 0 cuisine almond angelica anise anise_seed apple \\\n",
|
|
|
|
|
"0 0 indian 0 0 0 0 0 \n",
|
|
|
|
|
"1 1 indian 1 0 0 0 0 \n",
|
|
|
|
|
"2 2 indian 0 0 0 0 0 \n",
|
|
|
|
|
"3 3 indian 0 0 0 0 0 \n",
|
|
|
|
|
"4 4 indian 0 0 0 0 0 \n",
|
|
|
|
|
"\n",
|
|
|
|
|
" apple_brandy apricot armagnac ... whiskey white_bread white_wine \\\n",
|
|
|
|
|
"0 0 0 0 ... 0 0 0 \n",
|
|
|
|
|
"1 0 0 0 ... 0 0 0 \n",
|
|
|
|
|
"2 0 0 0 ... 0 0 0 \n",
|
|
|
|
|
"3 0 0 0 ... 0 0 0 \n",
|
|
|
|
|
"4 0 0 0 ... 0 0 0 \n",
|
|
|
|
|
"\n",
|
|
|
|
|
" whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n",
|
|
|
|
|
"0 0 0 0 0 0 0 0 \n",
|
|
|
|
|
"1 0 0 0 0 0 0 0 \n",
|
|
|
|
|
"2 0 0 0 0 0 0 0 \n",
|
|
|
|
|
"3 0 0 0 0 0 0 0 \n",
|
|
|
|
|
"4 0 0 0 0 0 1 0 \n",
|
|
|
|
|
"\n",
|
|
|
|
|
"[5 rows x 382 columns]"
|
|
|
|
|
],
|
|
|
|
|
"text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>Unnamed: 0</th>\n <th>cuisine</th>\n <th>almond</th>\n <th>angelica</th>\n <th>anise</th>\n <th>anise_seed</th>\n <th>apple</th>\n <th>apple_brandy</th>\n <th>apricot</th>\n <th>armagnac</th>\n <th>...</th>\n <th>whiskey</th>\n <th>white_bread</th>\n <th>white_wine</th>\n <th>whole_grain_wheat_flour</th>\n <th>wine</th>\n <th>wood</th>\n <th>yam</th>\n <th>yeast</th>\n <th>yogurt</th>\n <th>zucchini</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td>0</td>\n <td>indian</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>...</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n </tr>\n <tr>\n <th>1</th>\n <td>1</td>\n <td>indian</td>\n <td>1</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>...</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n </tr>\n <tr>\n <th>2</th>\n <td>2</td>\n <td>indian</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>...</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n </tr>\n <tr>\n <th>3</th>\n <td>3</td>\n <td>indian</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>...</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n </tr>\n <tr>\n <th>4</th>\n <td>4</td>\n <td>indian</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>...</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>1</td>\n <td>0</td>\n </tr>\n </tbody>\n</table>\n<p>5 rows × 382 columns</p>\n</div>"
|
|
|
|
|
},
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"execution_count": 1
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"source": [
|
|
|
|
|
"import pandas as pd\n",
|
|
|
|
|
"recipes_df = pd.read_csv(\"../../data/cleaned_cuisine.csv\")\n",
|
|
|
|
|
"recipes_df.head()"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": 2,
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": [
|
|
|
|
|
"from sklearn.linear_model import LogisticRegression\n",
|
|
|
|
|
"from sklearn.model_selection import train_test_split, cross_val_score\n",
|
|
|
|
|
"from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report, precision_recall_curve\n",
|
|
|
|
|
"from sklearn.svm import SVC\n",
|
|
|
|
|
"import numpy as np"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": 3,
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [
|
|
|
|
|
{
|
|
|
|
|
"output_type": "execute_result",
|
|
|
|
|
"data": {
|
|
|
|
|
"text/plain": [
|
|
|
|
|
"0 indian\n",
|
|
|
|
|
"1 indian\n",
|
|
|
|
|
"2 indian\n",
|
|
|
|
|
"3 indian\n",
|
|
|
|
|
"4 indian\n",
|
|
|
|
|
"Name: cuisine, dtype: object"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"execution_count": 3
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"source": [
|
|
|
|
|
"recipes_label_df = recipes_df['cuisine']\n",
|
|
|
|
|
"recipes_label_df.head()"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": 4,
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [
|
|
|
|
|
{
|
|
|
|
|
"output_type": "execute_result",
|
|
|
|
|
"data": {
|
|
|
|
|
"text/plain": [
|
|
|
|
|
" almond angelica anise anise_seed apple apple_brandy apricot \\\n",
|
|
|
|
|
"0 0 0 0 0 0 0 0 \n",
|
|
|
|
|
"1 1 0 0 0 0 0 0 \n",
|
|
|
|
|
"2 0 0 0 0 0 0 0 \n",
|
|
|
|
|
"3 0 0 0 0 0 0 0 \n",
|
|
|
|
|
"4 0 0 0 0 0 0 0 \n",
|
|
|
|
|
"\n",
|
|
|
|
|
" armagnac artemisia artichoke ... whiskey white_bread white_wine \\\n",
|
|
|
|
|
"0 0 0 0 ... 0 0 0 \n",
|
|
|
|
|
"1 0 0 0 ... 0 0 0 \n",
|
|
|
|
|
"2 0 0 0 ... 0 0 0 \n",
|
|
|
|
|
"3 0 0 0 ... 0 0 0 \n",
|
|
|
|
|
"4 0 0 0 ... 0 0 0 \n",
|
|
|
|
|
"\n",
|
|
|
|
|
" whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n",
|
|
|
|
|
"0 0 0 0 0 0 0 0 \n",
|
|
|
|
|
"1 0 0 0 0 0 0 0 \n",
|
|
|
|
|
"2 0 0 0 0 0 0 0 \n",
|
|
|
|
|
"3 0 0 0 0 0 0 0 \n",
|
|
|
|
|
"4 0 0 0 0 0 1 0 \n",
|
|
|
|
|
"\n",
|
|
|
|
|
"[5 rows x 380 columns]"
|
|
|
|
|
],
|
|
|
|
|
"text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>almond</th>\n <th>angelica</th>\n <th>anise</th>\n <th>anise_seed</th>\n <th>apple</th>\n <th>apple_brandy</th>\n <th>apricot</th>\n <th>armagnac</th>\n <th>artemisia</th>\n <th>artichoke</th>\n <th>...</th>\n <th>whiskey</th>\n <th>white_bread</th>\n <th>white_wine</th>\n <th>whole_grain_wheat_flour</th>\n <th>wine</th>\n <th>wood</th>\n <th>yam</th>\n <th>yeast</th>\n <th>yogurt</th>\n <th>zucchini</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>...</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n </tr>\n <tr>\n <th>1</th>\n <td>1</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>...</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n </tr>\n <tr>\n <th>2</th>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>...</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n </tr>\n <tr>\n <th>3</th>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>...</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n </tr>\n <tr>\n <th>4</th>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>...</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>0</td>\n <td>1</td>\n <td>0</td>\n </tr>\n </tbody>\n</table>\n<p>5 rows × 380 columns</p>\n</div>"
|
|
|
|
|
},
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"execution_count": 4
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"source": [
|
|
|
|
|
"recipes_feature_df = recipes_df.drop(['Unnamed: 0', 'cuisine'], axis=1)\n",
|
|
|
|
|
"recipes_feature_df.head()"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": 5,
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": [
|
|
|
|
|
"X_train, X_test, y_train, y_test = train_test_split(recipes_feature_df, recipes_label_df, test_size=0.3)"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "markdown",
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"source": [
|
|
|
|
|
"# Try different classifiers"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": 6,
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": [
|
|
|
|
|
"\r\n",
|
|
|
|
|
"C = 10\r\n",
|
|
|
|
|
"# Create different classifiers.\r\n",
|
|
|
|
|
"classifiers = {\r\n",
|
|
|
|
|
" 'L1 logistic': LogisticRegression(C=C, penalty='l1',\r\n",
|
|
|
|
|
" solver='saga',\r\n",
|
|
|
|
|
" multi_class='multinomial',\r\n",
|
|
|
|
|
" max_iter=10000),\r\n",
|
|
|
|
|
" 'L2 logistic (Multinomial)': LogisticRegression(C=C, penalty='l2',\r\n",
|
|
|
|
|
" solver='saga',\r\n",
|
|
|
|
|
" multi_class='multinomial',\r\n",
|
|
|
|
|
" max_iter=10000),\r\n",
|
|
|
|
|
" 'L2 logistic (OvR)': LogisticRegression(C=C, penalty='l2',\r\n",
|
|
|
|
|
" solver='saga',\r\n",
|
|
|
|
|
" multi_class='ovr',\r\n",
|
|
|
|
|
" max_iter=10000),\r\n",
|
|
|
|
|
" 'Linear SVC': SVC(kernel='linear', C=C, probability=True,\r\n",
|
|
|
|
|
" random_state=0)\r\n",
|
|
|
|
|
"}\r\n"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": 7,
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [
|
|
|
|
|
{
|
|
|
|
|
"output_type": "stream",
|
|
|
|
|
"name": "stdout",
|
|
|
|
|
"text": [
|
|
|
|
|
"Accuracy (train) for L1 logistic: 79.8% \n",
|
|
|
|
|
"Accuracy (train) for L2 logistic (Multinomial): 80.2% \n",
|
|
|
|
|
"Accuracy (train) for L2 logistic (OvR): 81.3% \n",
|
|
|
|
|
"Accuracy (train) for Linear SVC: 79.6% \n"
|
|
|
|
|
]
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"source": [
|
|
|
|
|
"n_classifiers = len(classifiers)\r\n",
|
|
|
|
|
"\r\n",
|
|
|
|
|
"for index, (name, classifier) in enumerate(classifiers.items()):\r\n",
|
|
|
|
|
" classifier.fit(X_train, np.ravel(y_train))\r\n",
|
|
|
|
|
"\r\n",
|
|
|
|
|
" y_pred = classifier.predict(X_test)\r\n",
|
|
|
|
|
" accuracy = accuracy_score(y_test, y_pred)\r\n",
|
|
|
|
|
" print(\"Accuracy (train) for %s: %0.1f%% \" % (name, accuracy * 100))\r\n"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": null,
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": []
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"metadata": {
|
|
|
|
|
"interpreter": {
|
|
|
|
|
"hash": "dd61f40108e2a19f4ef0d3ebbc6b6eea57ab3c4bc13b15fe6f390d3d86442534"
|
|
|
|
|
},
|
|
|
|
|
"kernelspec": {
|
|
|
|
|
"name": "python37364bit8d3b438fb5fc4430a93ac2cb74d693a7",
|
|
|
|
|
"display_name": "Python 3.7.0 64-bit ('3.7')"
|
|
|
|
|
},
|
|
|
|
|
"language_info": {
|
|
|
|
|
"codemirror_mode": {
|
|
|
|
|
"name": "ipython",
|
|
|
|
|
"version": 3
|
|
|
|
|
},
|
|
|
|
|
"file_extension": ".py",
|
|
|
|
|
"mimetype": "text/x-python",
|
|
|
|
|
"name": "python",
|
|
|
|
|
"nbconvert_exporter": "python",
|
|
|
|
|
"pygments_lexer": "ipython3",
|
|
|
|
|
"version": "3.7.0"
|
|
|
|
|
},
|
|
|
|
|
"metadata": {
|
|
|
|
|
"interpreter": {
|
|
|
|
|
"hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d"
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
},
|
|
|
|
|
"nbformat": 4,
|
|
|
|
|
"nbformat_minor": 4
|
|
|
|
|
}
|