In this second classification lesson, you will explore more ways to classify numeric data. You will also learn about the ramifications for choosing one over the other.
We assume that you have completed the previous lessons and have a cleaned dataset in your `data` folder called _cleaned_cuisine.csv_ in the root of this 4-lesson folder.
Previously, you learned about the various options you have when classifying data using Microsoft's cheat sheet. Scikit-learn offers a similar, but more granular cheat sheet that can further help narrow down your estimators (another term for classifiers):
Support-Vector clustering (SVC) is a child of the Support-Vector machines family of ML techniques (learn more about these below). In this method, you can choose a 'kernel' to decide how to cluster the labels. The 'C' parameter refers to 'regularization' which regulates the influence of parameters. The kernel can be one of [several](https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC); here we set it to 'linear' to ensure that we leverage linear SVC. Probability defaults to 'false'; here we set it to 'true' to gather probability estimates. We set the random state to '0' to shuffle the data to get probabilities.
The previous classifier was good, and worked well with the data, but maybe we can get better accuracy. Try a K-Neighbors classifer. Add a line to your classifier array (add a comma after the Linear SVC item):
K-Neighbors is part of the "neighbors" family of ML methods, which can be used for both supervised and unsupervised learning. In this method, a predefined number of points is created and data are gathered around these points such that generalized labels can be predicted for the data.
Support-Vector classifiers are part of the [Support-Vector Machine](https://wikipedia.org/wiki/Support-vector_machine) family of ML methods that are used for classification and regression tasks. SVMs "map training examples to points in space" to maximize the distance between two categories. Subsequent data is mapped into this space so their category can be predicted.
Let's follow the path to the very end, even though the previous test was quite good. Let's try some 'Ensemble Classifiers, specifically Random Forest and AdaBoost:
The result is very good, especially for Random Forest:
```
Accuracy (train) for RFST: 84.5%
precision recall f1-score support
chinese 0.80 0.77 0.78 242
indian 0.89 0.92 0.90 234
japanese 0.86 0.84 0.85 254
korean 0.88 0.83 0.85 242
thai 0.80 0.87 0.83 227
accuracy 0.84 1199
macro avg 0.85 0.85 0.84 1199
weighted avg 0.85 0.84 0.84 1199
Accuracy (train) for ADA: 72.4%
precision recall f1-score support
chinese 0.64 0.49 0.56 242
indian 0.91 0.83 0.87 234
japanese 0.68 0.69 0.69 254
korean 0.73 0.79 0.76 242
thai 0.67 0.83 0.74 227
accuracy 0.72 1199
macro avg 0.73 0.73 0.72 1199
weighted avg 0.73 0.72 0.72 1199
```
✅ Learn about [Ensemble Classifiers](https://scikit-learn.org/stable/modules/ensemble.html)
This method of Machine Learning "combines the predictions of several base estimators" to improve the model's quality. In our example, we used Random Trees and AdaBoost.
- [Random Forest](https://scikit-learn.org/stable/modules/ensemble.html#forest), an averaging method, builds a 'forest' of 'decision trees' infused with randomness to avoid overfitting. The n_estimators parameter is set to the number of trees.
- [AdaBoost](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html) fits a classifier to a dataset and then fits copies of that classifier to the same dataset. It focuses on the weights of incorrectly classified items and adjusts the fit for the next classifier to correct.
Each of these techniques has a large number of parameters that you can tweak. Research each one's default parameters and think about what tweaking these parameters would mean for the model's quality.
There's a lot of jargon in these lessons, so take a minute to review [this list](https://docs.microsoft.com/dotnet/machine-learning/resources/glossary?WT.mc_id=academic-15963-cxa) of useful terminology!