You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ML-For-Beginners/4-Classification/3-Classifiers-2/README.md

199 lines
9.2 KiB

3 years ago
# Recipe Classifiers 2
4 years ago
3 years ago
In this second Classification lesson, you will explore more ways to classify numeric data, and the ramifications for choosing one over the other.
3 years ago
## [Pre-lecture quiz](https://jolly-sea-0a877260f.azurestaticapps.net/quiz/21/)
4 years ago
3 years ago
### Prerequisite
We assume that you have completed the previous lessons and have a cleaned dataset in your `data` folder called `cleaned_cuisine.csv` in the root of this 4-lesson folder.
### Preparation
We have loaded your `notebook.ipynb` file with the cleaned dataset and have divided it into X and y dataframes, ready for the model building process.
## A Classification Map
Previously, you learned about the various options you have when classifying data using Microsoft's cheat sheet. Scikit-Learn offers a similar, but more granular cheat sheet that can further help narrow down your estimators (another term for classifiers):
3 years ago
![ML Map from Scikit-Learn](images/map.png)
3 years ago
> Tip: [visit this map online](https://scikit-learn.org/stable/tutorial/machine_learning_map/) and click along the path to read documentation.
3 years ago
3 years ago
This map is very helpful once you have a clear grasp of your data, as you can 'walk' along its paths to a decision:
3 years ago
- We have >50 samples
- We want to predict a category
- We have labeled data
- We have fewer than 100K samples
3 years ago
- ✨ We can choose a Linear SVC
3 years ago
- If that doesn't work, since we have numeric data
3 years ago
- We can try a ✨ KNeighbors Classifier
- If that doesn't work, try ✨ SVC and ✨ Ensemble Classifiers
This is a terrific trail to try. Following this path, we should start by importing some libraries to use:
```python
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report, precision_recall_curve
import numpy as np
```
Split your training and test data:
3 years ago
3 years ago
```python
X_train, X_test, y_train, y_test = train_test_split(recipes_feature_df, recipes_label_df, test_size=0.3)
```
## Linear SVC Classifier
4 years ago
3 years ago
Start by creating an array of classifiers. You will add progressively to this array as we test. Start with a Linear SVC:
4 years ago
3 years ago
```python
C = 10
# Create different classifiers.
classifiers = {
'Linear SVC': SVC(kernel='linear', C=C, probability=True,random_state=0)
}
```
Train your model using the Linear SVC and print out a report:
4 years ago
3 years ago
```python
n_classifiers = len(classifiers)
4 years ago
3 years ago
for index, (name, classifier) in enumerate(classifiers.items()):
classifier.fit(X_train, np.ravel(y_train))
4 years ago
3 years ago
y_pred = classifier.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy (train) for %s: %0.1f%% " % (name, accuracy * 100))
print(classification_report(y_test,y_pred))
```
The result is pretty good:
4 years ago
3 years ago
```
Accuracy (train) for Linear SVC: 78.6%
precision recall f1-score support
chinese 0.71 0.67 0.69 242
indian 0.88 0.86 0.87 234
japanese 0.79 0.74 0.76 254
korean 0.85 0.81 0.83 242
thai 0.71 0.86 0.78 227
accuracy 0.79 1199
macro avg 0.79 0.79 0.79 1199
weighted avg 0.79 0.79 0.79 1199
```
✅ Learn about Linear SVC
4 years ago
3 years ago
Support-Vector Clustering (SVC) is a child of the Support-Vector machines family of ML techniques (learn more about these below). In this method, you can choose a 'kernel' to decide how to cluster the labels. The 'C' parameter refers to 'regularization' which regulates the influence of parameters. The kernel can be one of [several](https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC); here we set it to 'linear' to ensure that we leverage Linear SVC. Probability defaults to 'false'; here we set it to 'true' to gather probability estimates. We set the random state to '0' to shuffle the data to get probabilities.
## K-Neighbors Classifier
4 years ago
3 years ago
The previous classifier was good, and worked well with the data, but maybe we can get better accuracy. Try a K-Neighbors Classifer. Add a line to your classifier array (add a comma after the Linear SVC item):
4 years ago
3 years ago
```python
'KNN classifier': KNeighborsClassifier(C),
```
The result is a little worse:
4 years ago
3 years ago
```
Accuracy (train) for KNN classifier: 73.8%
precision recall f1-score support
chinese 0.64 0.67 0.66 242
indian 0.86 0.78 0.82 234
japanese 0.66 0.83 0.74 254
korean 0.94 0.58 0.72 242
thai 0.71 0.82 0.76 227
accuracy 0.74 1199
macro avg 0.76 0.74 0.74 1199
weighted avg 0.76 0.74 0.74 1199
```
✅ Learn about [K-Neighbors](https://scikit-learn.org/stable/modules/neighbors.html#neighbors)
4 years ago
3 years ago
K-Neighbors is part of the "neighbors" family of ML methods, which can be used for both supervised and unsupervised learning. In this method, a predefined number of points is created and data are gathered around these points such that generalized labels can be predicted for the data.
## Support Vector Classifier
4 years ago
3 years ago
Let's try for a little better accuracy with a Support Vector Classifier. Add a comma after the K-Neighbors item, and then add this line:
4 years ago
3 years ago
```python
'SVC': SVC(),
4 years ago
```
3 years ago
The result is quite good!
4 years ago
3 years ago
```
Accuracy (train) for SVC: 83.2%
precision recall f1-score support
chinese 0.79 0.74 0.76 242
indian 0.88 0.90 0.89 234
japanese 0.87 0.81 0.84 254
korean 0.91 0.82 0.86 242
thai 0.74 0.90 0.81 227
accuracy 0.83 1199
macro avg 0.84 0.83 0.83 1199
weighted avg 0.84 0.83 0.83 1199
```
4 years ago
3 years ago
✅ Learn about [Support-Vectors](https://scikit-learn.org/stable/modules/svm.html#svm)
4 years ago
3 years ago
Support-Vector Classifiers are part of the [Support-Vector Machine](https://en.wikipedia.org/wiki/Support-vector_machine) family of ML methods that are used for classification and regression tasks. SVMs "map training examples to points in space" to maximize the distance between two categories. Subsequent data is mapped into this space so their category can be predicted.
## Ensemble Classifiers
4 years ago
3 years ago
Let's follow the path to the very end, even though the previous test was quite good. Let's try some 'Ensemble Classifiers, specifically Random Forest and AdaBoost:
3 years ago
```
'RFST': RandomForestClassifier(n_estimators=100),
'ADA': AdaBoostClassifier(n_estimators=100)
```
The result is very good, especially for Random Forest:
```
Accuracy (train) for RFST: 84.5%
precision recall f1-score support
chinese 0.80 0.77 0.78 242
indian 0.89 0.92 0.90 234
japanese 0.86 0.84 0.85 254
korean 0.88 0.83 0.85 242
thai 0.80 0.87 0.83 227
accuracy 0.84 1199
macro avg 0.85 0.85 0.84 1199
weighted avg 0.85 0.84 0.84 1199
Accuracy (train) for ADA: 72.4%
precision recall f1-score support
chinese 0.64 0.49 0.56 242
indian 0.91 0.83 0.87 234
japanese 0.68 0.69 0.69 254
korean 0.73 0.79 0.76 242
thai 0.67 0.83 0.74 227
accuracy 0.72 1199
macro avg 0.73 0.73 0.72 1199
weighted avg 0.73 0.72 0.72 1199
```
✅ Learn about [Ensemble Classifiers](https://scikit-learn.org/stable/modules/ensemble.html)
This method of Machine Learning "combines the predictions of several base estimators" to improve the model's quality. In our example, we used Random Trees and AdaBoost.
- [Random Forest](https://scikit-learn.org/stable/modules/ensemble.html#forest), an averaging method, builds a 'forest' of 'decision trees' infused with randomness to avoid overfitting. The n_estimators parameter is set to the number of trees.
- [AdaBoost](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html) fits a classifier to a dataset and then fits copies of that classifier to the same dataset. It focuses on the weights of incorrectly classified items and adjusts the fit for the next classifier to correct.
## 🚀Challenge
4 years ago
3 years ago
Each of these techniques has a large number of parameters that you can tweak. Research each one's default parameters and think about what tweaking these parameters would mean for the model's quality.
4 years ago
3 years ago
## [Post-lecture quiz](https://jolly-sea-0a877260f.azurestaticapps.net/quiz/22/)
4 years ago
## Review & Self Study
3 years ago
There's a lot of jargon in these lessons, so take a minute to review [this list](https://docs.microsoft.com/en-us/dotnet/machine-learning/resources/glossary?WT.mc_id=academic-15963-cxa) of useful terminology!
## Assignment
3 years ago
[Parameter Play](assignment.md)