You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
IoT-For-Beginners/4-manufacturing/lessons/3-run-fruit-detector-edge/wio-terminal.md

53 lines
2.0 KiB

# Classify an image using an IoT Edge based image classifier - Wio Terminal
In this part of the lesson, you will use the Image Classifier running on the IoT Edge device.
## Use the IoT Edge classifier
The IoT device can be re-directed to use the IoT Edge image classifier. The URL for the Image Classifier is `http://<IP address or name>/image`, replacing `<IP address or name>` with the IP address or host name of the computer running IoT Edge.
### Task - use the IoT Edge classifier
1. Open the `fruit-quality-detector` app project if it's not already open.
1. The image classifier is running as a REST API using HTTP, not HTTPS, so the call needs to use a WiFi client that works with HTTP calls only. This means the certificate is not needed. Delete the `CERTIFICATE` from the `config.h` file.
1. The prediction URL in the `config.h` file needs to be updated to the new URL. You can also delete the `PREDICTION_KEY` as this is not needed.
```cpp
const char *PREDICTION_URL = "<URL>";
```
Replace `<URL>` with the URL for your classifier.
1. In `main.cpp`, change the include directive for the WiFi Client Secure to import the standard HTTP version:
```cpp
#include <WiFiClient.h>
```
1. Change the declaration of `WiFiClient` to be the HTTP version:
```cpp
WiFiClient client;
```
1. Select the line that sets the certificate on the WiFi client. Remove the line `client.setCACert(CERTIFICATE);` from the `connectWiFi` function.
1. In the `classifyImage` function, remove the `httpClient.addHeader("Prediction-Key", PREDICTION_KEY);` line that sets the prediction key in the header.
1. Upload and run your code. Point the camera at some fruit and press the C button. You will see the output in the serial monitor:
```output
Connecting to WiFi..
Connected!
Image captured
Image read to buffer with length 8200
ripe: 56.84%
unripe: 43.16%
```
> 💁 You can find this code in the [code-classify/wio-terminal](code-classify/wio-terminal) folder.
😀 Your fruit quality classifier program was a success!