Update README.bn.md

pull/316/head
Mohammad Iftekher (Iftu) Ebne Jalal 4 years ago committed by GitHub
parent e24cf7248f
commit 3156befe2e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -38,7 +38,7 @@
স্বয়ংক্রিয় পদ্ধতিতে ফসল তোলার ফলে, উৎপাদিত পণ্যের শ্রেণিবিন্যাস কার্যক্রম বর্তমানে কারখানায় হয়ে থাকে। খাদ্য লম্বা কনভেয়ার বেল্ট দিয়ে যাবে এবং শ্রমিকেরা নিম্নমানের পণ্য অপসারণ করবে। যন্ত্রপাতির কল্যাণে ফসল কাটা ও সংগ্রহ করার ক্ষেত্রে খরচ কম ছিল, কিন্তু ম্যানুয়ালি পণ্য বাছাই করা অতিরিক্ত খরচ ও শ্রমের কাজ।
![If a red tomato is detected it continues its journey uninterrupted. If a green tomato is detected it is flicked into a waste bin by a lever](../../../images/optical-tomato-sorting.png)
![If a red tomato is detected it continues its journey uninterrupted. If a green tomato is detected it is flicked into a waste bin by a lever](../../../../images/optical-tomato-sorting.png)
এই যাত্রায় পরবর্তী বিবর্তন ছিল মেশিনগুলিকে বাছাই করার জন্য ব্যবহার করা, হয় হার্ভেস্টারে নির্মিত অথবা প্রক্রিয়াকরণ কারখানায়। এই মেশিনের প্রথম প্রজন্ম অপটিক্যাল সেন্সর ব্যবহার করে রং সনাক্ত করে, অ্যাকচুয়েটরগুলিকে নিয়ন্ত্রণ করে সবুজ টমেটোকে একটি পাত্রে ধাক্কা দিয়ে ফেলে দিতো, বাতাসের লিভার বা পফ ব্যবহার করে। আবার লাল টমেটো গুলোকে ছেড়ে দিতো যাতে তারা কনভেয়র বেল্টে এগিয়ে যেতে থাকে।
@ -58,7 +58,7 @@
সার্বজনীনভাবে প্রোগ্রামিং হলো এমন একটি কার্যক্রম যেখানে আমরা ডেটা গ্রহণ করি, ডেটাতে একটি অ্যালগরিদম প্রয়োগ এবং আউটপুট পাই। উদাহরণস্বরূপ, গত প্রজেক্টে আমরা জিপিএস কোঅর্ডিনেটস এবং একটি জিওফেন্স নিয়েছি্লাম, একটি অ্যালগরিদম প্রয়োগ করা হয়েছিলো যা Azure ম্যাপ দ্বারা সরবরাহ করা হয়েছিল এবং জিওফেন্সের ভিতরে বা বাইরে পয়েন্ট থাকলে তার ফলাফল পেয়েছিলাম। আমরা আরও ডেটা ইনপুট নিলে, আমরা আরও বেশি আউটপুট পাব।
![Traditional development takes input and an algorithm and gives output. Machine learning uses input and output data to train a model, and this model can take new input data to generate new output](../../../images/traditional-vs-ml.png)
![Traditional development takes input and an algorithm and gives output. Machine learning uses input and output data to train a model, and this model can take new input data to generate new output](../../../../images/traditional-vs-ml.png)
মেশিন লার্নিং এটিকে সম্পূর্ণ উল্টোদিক থেকে করে - আমরা ডেটা এবং পরিচিত আউটপুট দিয়ে শুরু করি এবং মেশিন লার্নিং অ্যালগরিদম সেই সংগৃহীত ফলাফলের ডেটা থেকে শিখে যে তাকে কী করতে হবে। তারপর আমরা সেই প্রশিক্ষিত অ্যালগরিদম নিতে পারি, যাকে বলা হয় *মেশিন লার্নিং মডেল* বা শুধুমাত্র *মডেল*, এবং এটিতে নতুন ডেটা ইনপুট করে আমরা নতুন আউটপুট পাব।
@ -70,7 +70,7 @@ For example, you could give a model millions of pictures of unripe bananas as in
> 🎓 এমএল মডেলের ফলাফলকে বলা হয় *পূর্বাভাস (predictions)*
![2 bananas, a ripe one with a prediction of 99.7% ripe, 0.3% unripe, and an unripe one with a prediction of 1.4% ripe, 98.6% unripe](../../../images/bananas-ripe-vs-unripe-predictions.png)
![2 bananas, a ripe one with a prediction of 99.7% ripe, 0.3% unripe, and an unripe one with a prediction of 1.4% ripe, 98.6% unripe](../../../../images/bananas-ripe-vs-unripe-predictions.png)
এমএল মডেলগুলি বাইনারি উত্তর দেয় না, বরং তারা সম্ভাব্যতা দেয়। উদাহরণস্বরূপ, একটি মডেলকে একটি কলার ছবি দেওয়া হলে এবং `পাকা` তে ৯৯.% এবং `কাঁচা` তে .০৩% এর রেজাল্ট দিতে পারে। আমাদের কোড তারপর সেই পূর্বাভাস বাছাই করবে এবং কলা পাকা - এই সিদ্ধান্ত নেবে।
@ -86,7 +86,7 @@ For example, you could give a model millions of pictures of unripe bananas as in
একবার ইমেজ ক্লাসিফায়ারকে বিভিন্ন ধরণের চিত্রের জন্য প্রশিক্ষণ দেওয়া হলে, এর অভ্যন্তরীণ আকার, রঙ এবং নিদর্শনগুলি সনাক্ত করতে বেশ পারদর্শী হয়ে যায়। ট্রান্সফার লার্নিং এর দ্বারা মডেলটি ইমেজ পার্টস এর ইতিমধ্যে যা শিখেছে তা নিতে এবং নতুন ইমেজ চিনতে বেশ সুবিধা হয়।
![Once you can recognize shapes, they can be put into different configurations to make a boat or a cat](../../../images/shapes-to-images.png)
![Once you can recognize shapes, they can be put into different configurations to make a boat or a cat](../../../../images/shapes-to-images.png)
আমরা এটিকে ছোটদেরকে আকার-আকৃতি চেনানোর জন্য ছবির বইয়ের মতো মনে করতে পারি, যেখানে একবার আমরা একটি অর্ধ-বৃত্ত, একটি আয়তক্ষেত্র এবং একটি ত্রিভুজ চিনতে পারিদ। আমরা এই আকারগুলির কনফিগারেশনের উপর নির্ভর করে একটি পাল তোলা নৌকা বা একটি বিড়ালকে চিনতে পারি। ইমেজ ক্লাসিফায়ার আকার চিনতে পারে এবং ট্রান্সফার লার্নিং এটি শেখায় যে কী কী সমন্বয় করে একটি নৌকা বা একটি বিড়াল তৈরি করে - অথবা একটি কীভাবে একটি পাকা কলা পাওয়া যায়।
@ -98,7 +98,7 @@ For example, you could give a model millions of pictures of unripe bananas as in
কাস্টম ভিশন হল ইমেজ ক্লাসিফায়ার প্রশিক্ষণের জন্য একটি ক্লাউড ভিত্তিক টুল। এটি আমাদেরকে অল্প সংখ্যক চিত্র ব্যবহার করে একটি ক্লাসিফায়ার প্রশিক্ষণ দেওয়ার অনুমতি দেয়। আমরা একটি ওয়েব পোর্টাল, ওয়েব এপিআই বা একটি এসডিকে এর মাধ্যমে ছবি আপলোড করতে পারি, প্রতিটি ইমেজকে একটি *ট্যাগ* দিতে পারি যেটি সেই ছবির শ্রেণিবিন্যাস নির্দেশ করে। তারপরে আমরা মডেলটিকে প্রশিক্ষণ দিব এবং এটি কতটা ভাল কাজ করে তা পরীক্ষা করে দেখব। একবার আমরা মডেলটি নিয়ে সন্তুষ্ট হলে, আমরা এর সংস্করণগুলি প্রকাশ করতে পারি যা একটি ওয়েব API বা SDK এর মাধ্যমে ব্যবহার করা যায়।
![The Azure Custom Vision logo](../../../images/custom-vision-logo.png)
![The Azure Custom Vision logo](../../../../images/custom-vision-logo.png)
> 💁 একটি কাস্টম ভিশন মডেলকে প্রতি শ্রেণিবিন্যাসের জন্য কমপক্ষে 5টির মতো প্রশিক্ষণ ছবি দিতে পারি, তবে যত বেশী দিতে পারবো, তত ভালো। উন্নত ফলাফলের জন্য কমপক্ষে 30 টি ছবি দেয়া উচিত।
@ -154,7 +154,7 @@ For example, you could give a model millions of pictures of unripe bananas as in
আমরা এখন আমাদের প্রজেক্ট তৈরি করি, আমাদের আগে তৈরি করা `fruit-quality-detector-training রিসোর্স ব্যবহার করতে হবে। একটি *ক্লাসিফিকেশন* প্রজেক্ট টাইপ, একটি *মাল্টিক্লাস* ক্লাসিফিকেশন টাইপ এবং *ফুড* ডোমেইন ব্যবহার করি।
![The settings for the custom vision project with the name set to fruit-quality-detector, no description, the resource set to fruit-quality-detector-training, the project type set to classification, the classification types set to multi class and the domains set to food](../../../images/custom-vision-create-project.png)
![The settings for the custom vision project with the name set to fruit-quality-detector, no description, the resource set to fruit-quality-detector-training, the project type set to classification, the classification types set to multi class and the domains set to food](../../../../images/custom-vision-create-project.png)
✅ ইমেজ ক্লাসিফায়ারের জন্য কাস্টম ভিশন ইউআই এক্সপ্লোর করার জন্য কিছু সময় নিই।
@ -174,7 +174,7 @@ For example, you could give a model millions of pictures of unripe bananas as in
* ২টি পাকা কলা নিয়ে, কয়েকটি ভিন্ন অবস্থান থেকে প্রত্যেকটির কিছু ছবি তুলি, কমপক্ষে টি ছবি তুলতে হবে (৫ টি প্রশিক্ষণ, ২টি পরীক্ষা)। কিন্তু আরও বেশি ছবি তুলতে পারলে ভালো।
![Photos of 2 different bananas](../../../images/banana-training-images.png)
![Photos of 2 different bananas](../../../../images/banana-training-images.png)
* ২টি কাঁচা কলা একই কাজটি আবারও করি।
@ -184,7 +184,7 @@ For example, you could give a model millions of pictures of unripe bananas as in
1. এক্ষেত্রে সহজে অনুসরণযোগ্য গাইড হিসেবে [ক্লাসিফায়ারের জন্য ছবি আপলোড ও ট্যাগ](https://docs.microsoft.com/azure/cognitive-services/custom-vision-service/getting-started-build-a-classifier?WT.mc_id=academic-17441-jabenn#upload-and-tag-images) ্দেখতে পারি। পাকা কলাকে `ripe` এবং কাঁচাগুলোকে `unripe` হিসেবে ট্যাগ দিই।
![The upload dialogs showing the upload of ripe and unripe banana pictures](../../../images/image-upload-bananas.png)
![The upload dialogs showing the upload of ripe and unripe banana pictures](../../../../images/image-upload-bananas.png)
1. এখন [ক্লাসিফায়ারের ট্রেনিং কুইকস্টার্ট গাইড ](https://docs.microsoft.com/azure/cognitive-services/custom-vision-service/getting-started-build-a-classifier?WT.mc_id=academic-17441-jabenn#train-the-classifier) দেখে ট্রেনিং সম্পন্ন করি।
@ -202,7 +202,7 @@ The classifier will then train. It will take a few minutes for the training to c
1. এক্ষেত্রে সহজে অনুসরণযোগ্য [মডেল টেস্ট করার গাইড](https://docs.microsoft.com/azure/cognitive-services/custom-vision-service/test-your-model?WT.mc_id=academic-17441-jabenn#test-your-model) অনুসরণ করি, নতুন ছবি দিয়ে টেস্ট করতে।
![A unripe banana predicted as unripe with a 98.9% probability, ripe with a 1.1% probability](../../../images/banana-unripe-quick-test-prediction.png)
![A unripe banana predicted as unripe with a 98.9% probability, ripe with a 1.1% probability](../../../../images/banana-unripe-quick-test-prediction.png)
1. আমাদের কাছে থাকা সমস্ত ছবিগুলি দিয়ে চেষ্টা করি এবং ফলাফলের নির্ভুল হবার সম্ভাবনা পর্যবেক্ষণ করি।

Loading…
Cancel
Save