You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Data-Science-For-Beginners/translations/README.pt-pt.md

15 KiB

Data Science para Inciantes - Um curso

GitHub license GitHub contributors GitHub issues GitHub pull-requests PRs Welcome

GitHub watchers GitHub forks GitHub stars

Os promotores da Azure Cloud na Microsoft estam entusiasmados por oferecer 10 semanas, 20 lições todas sobre Data Science. Cada lição é composta por dois quizzes (um pré e outro pós aula), instruções escritas de como concluir a lição, uma solução, e ainda um trabalho de casa. A pedagogia à base de projectos, permite que aprendas enquanto crias algo, um metodo comprovado para "agarrar" as skills aprendidas.

Um agradecimento caloroso aos nossos autores: Jasmine Greenaway, Dmitry Soshnikov, Nitya Narasimhan, Jalen McGee, Jen Looper, Maud Levy, Tiffany Souterre, Christopher Harrison.

🙏 E um agradecimento muito especial 🙏 aos nosso Estudantes Embaixadores da Microsoft autores, revisores e contribuidores de conteudos, notavelmente Aaryan Arora, Aditya Garg, Alondra Sanchez, Ankita Singh, Anupam Mishra, Arpita Das, ChhailBihari Dubey, Dibri Nsofor, Dishita Bhasin, Majd Safi, Max Blum, Miguel Correa, Mohamma Iftekher (Iftu) Ebne Jalal, Nawrin Tabassum, Raymond Wangsa Putra, Rohit Yadav, Samridhi Sharma, Sanya Sinha, Sheena Narula, Tauqeer Ahmad, Yogendrasingh Pawar

 Sketchnote by (@sketchthedocs)
Data Science para Iniciantes - Sketchnote by @nitya

Primeiros Passos

Para Professores: nós incluímos algumas sugestões em como usar este curso. Adorávamos ou vir a vossa opínião no nosso paínel de discussões!

Para Estudantes: para utilizares este cursão por conta própria, faz fork deste repositório e completa cada um dos exercícios, começando sempre pelo quiz pré lição. De seguida lê as informações referente à lição e completa o resto das atívidades. Tenta criar os projectos com os conhecimentos adquiridos na lição em vez de copiares o código diretamente da solução. No final ou caso tenhas dúvidas podes sempre olhar para o código fornecido na pasta /solutions para as lições em que são apresentados os projectos. Outra ideia seria criares um grupo de estudo com os teus amigos, de forma a aprenderem todos juntos. Se estiveres interessado em mais conteúdo de aprendizagem, recomendamosMicrosoft Learn.

Conhece a equipa

Promo video

Gif por Mohit Jaisal

🎥 Clica na imagem acima para um video sobre o curso e o pessoal que o criou!

Pedagogia

Nós escolhemos adoptar dois caminhos pedagógicos ao criar este curso: garantir uma aprendizagem à base de projectos e a inclusão de quizzes frequentes. No final deste conjunto de lições, os estudantes teram aprendido os princípios básicos de Data Science, incluido conceitos éticos, preparação, manipulação, visualização e análise de dados, assim como cenários reais da utilização da Data Science e muito mais.

Um quiz de aquecimento antes da aula de forma a cativar a atenção do aluno para o tópico a aprender, e um segundo quiz no final da aula para assegurar a consolidação de conhecimentos. Este curso foi desenhado com felxibilidade e divertimento em mente, podendo ser feito de forma seguida ou às partes. Os desafios proposto começam de forma simples aumentando de complexidade ao longo das 10 semanas.

Encontra as nossas diretrizes de Conduta, Contribuição e Tradução. Feedback construtivo é mais apreciado!

Cada Lição incluí:

  • Um sketchbook (Opcional)
  • Um vídeo suplementar (Opcional)
  • Um quiz de aquecimento (Pré-Lição)
  • A lição escrita
  • Para lições baseadas em projectos, um guía passo-a-passo sobre como contruir o projecto
  • Uma verificação de conhecimentos
  • Um desafio
  • Leituras Suplementares
  • Um trabalho de casa
  • Um quiz de consolidação (Pré-Lição)

Nota sobre os quizzes: Os quizzes encontram-se nesta aplicação, num total de 40 quizzes com 3 perguntas cada. O link de cada quiz encontrasse nos documentos de cada lição mas a plataforma de quizzes pode ser corrida localmente: basta seguir as instruções da pasta quiz-app. Cada quiz esta a ser gradualmente trduzido.

Lições

 Sketchnote by (@sketchthedocs)
Data Science para Iniciantes: Roadmap - Sketchnote by @nitya
Número da Lição Tópico Categoria da Lição Conceitos a Aprender Link da Aula Autor
01 Definição de Data Science Introdução Aprender os conceitos base por detrás da Data Science e como estes se relacionam com a inteligência artificial, a machine learning e a big data. lições video Dmitry
02 Ética na Data Science Introdução Conceitos da Ética de dados, Desafios e Frameworks. lições Nitya
03 Definição de Dados Introdução Como são classificados os dados e quais a sua origem. lições Jasmine
04 Introdução a Probabilidades e Estatísticas Introdução As técnicas matemáticas de probabilidade e estatísca aplicadas aos dados. lições video Dmitry
05 Trabalhar com dados relacionais Trabalhar com Dados Introdução a dados relacionais e aos básicos de de análise e exploração de dados relacionais através de Linguagem de Procura Estruturada, também conhecida como SQL (e pronunciado "see-quell"). lições Christopher
06 Trabalhar com dados NoSQL Trabalhar com Dados Introdução a dados não relacionais, assim como aos vários tipos. Introdução aos básicos de análize de documentação de base de dados. lições Jasmine
07 Trabalhar com Python Trabalhar com Dados Basicos de Python para manípulação de dados através de bibliotecas como seja a bibliotéca Pandas. Conhecimento prévio dos fundamentos da linguagem de programação Python recomendado. lições video Dmitry
08 Preparação dos Dados Trabalhar com Dados Técnicas de tratamentos de dados de forma a lidar com dados incompletos, em falta ou pouco precisos. lições Jasmine
09 Visualizar Quantidades Visualização de Dados Aprender a utilizar Matplotlib para visualizar dados de pássaros 🦆 lições Jen
10 Visualizar Distribuições de Dados Visualização de Dados Observação de tendências de dados num intervalo de tempo lições Jen
11 Visualizar Proporções Visualização de Dados Visualizar percentagens de grupos e de forma discreta lições Jen
12 Visualizar Relações Visualização de Dados Visualizar ligações e correlações entre sets de dados e as suas propriedades. lições Jen
13 Visualização Eficiente Visualização de Dados Técnicas e orientação de visualização de dados para melhor obtenção de resultados. lições Jen
14 Introdução ao ciclo de vida de Data Science Cíclo de Vida Introdução ao ciclo de vida de Data Science e os primeiros passos de obtenção e extração de dados. lições Jasmine
15 Análise Cíclo de Vida Esta fase da Data Science foca-se nas técnicas de análise de dados. lições Jasmine
16 Comunicação Cíclo de Vida Esta fase foca-se em tratar e apresentar os dados, obtendo resultados de fácil compreenção para postriores decisões. lições Jalen
17 Data Science na Cloud Cloud Data Este conjunto de lições introduz o mundo da Data Science na Cloud. lições Tiffany e Maud
18 Data Science na Cloud Cloud Data Treino de modelos através da utilização de Ferramentas de Código de Baixo Nível. lições Tiffany e Maud
19 Data Science na Cloud Cloud Data Utilização de modelos treinados através da Azure Machine Learning Studio. lições Tiffany e Maud
20 Data Science ao vivo In the Wild Exemplos de projectos de casos reais com recurso a Data Science. lições Nitya

Acesso Offline

Podes correr esta documentação offline através da utilização de Docsify. Faz fork deste repositório, instala Docsify na tua máquina local, e depois na pasta principal des repositório, escreve docsify serve. Este website será então acesssível no localhost porta 3000: localhost:3000.

Nota, os notebooks nao seram renderizados via Docsify, por este motivo para correr um notebook, fá-lo no VS Code que esteja a correr o kernel do Python.

PDF

Um PDF com todas as lições pode ser encontrado aqui

Toda a ajuda é bem vinda!

Se gostavas de traduzir este curso, segue as intruções acessíveis em Translations

Outros Cursos

A nossa equipa tambem tem outros curso que possas estar interessado!