You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Data-Science-For-Beginners/5-Data-Science-In-Cloud/17-Introduction/translations/README.hi.md

21 KiB

क्लाउड में डेटा साइंस का परिचय

(@sketchthedocs) द्वारा स्केचनोट
क्लाउड में डेटा साइंस: परिचय - @nitya द्वारा स्केचनोट

इस पाठ में, आप क्लाउड के मूलभूत सिद्धांतों को जानेंगे, फिर आप देखेंगे कि आपके डेटा साइंस परियोजनाओं को चलाने के लिए क्लाउड सेवाओं का उपयोग करना आपके लिए दिलचस्प क्यों हो सकता है और हम क्लाउड में चलने वाले डेटा साइंस प्रोजेक्ट के कुछ उदाहरण देखेंगे।

प्री-लेक्चर क्विज़

क्लाउड क्या है?

क्लाउड, या क्लाउड कंप्यूटिंग, इंटरनेट पर एक बुनियादी ढांचे पर होस्ट की जाने वाली पे-एज़-यू-गो कंप्यूटिंग सेवाओं की एक विस्तृत श्रृंखला की डिलीवरी है। सेवाओं में स्टोरेज, डेटाबेस, नेटवर्किंग, सॉफ्टवेयर, एनालिटिक्स और इंटेलिजेंट सर्विसेज जैसे समाधान शामिल हैं।

हम आम तौर पर पब्लिक, प्राइवेट और हाइब्रिड क्लाउड में ऐसे अंतर करते हैं:

  • पब्लिक क्लाउड: एक पब्लिक क्लाउड का स्वामित्व और संचालन तीसरे पक्ष के क्लाउड सेवा प्रदाता के पास होता है जो इंटरनेट पर अपने कंप्यूटिंग संसाधनों को जनता तक पहुंचाता है।
  • प्राइवेट क्लाउड: एक ही व्यवसाय या संगठन द्वारा विशेष रूप से उपयोग किए जाने वाले क्लाउड कंप्यूटिंग संसाधनों को संदर्भित करता है, जिसमें सेवाओं और निजी नेटवर्क पर बनाए रखा गया इंफ्रास्ट्रक्चर होता है।
  • हाइब्रिड क्लाउड: हाइब्रिड क्लाउड एक ऐसा सिस्टम है जो पब्लिक और प्राइवेट क्लाउड को जोड़ता है। उपयोगकर्ता ऑन-प्रिमाइसेस डेटासेंटर चुनते हैं, जिससे डेटा और एप्लिकेशन को एक या अधिक पब्लिक क्लाउड पर चला सकते हैं।

अधिकांश क्लाउड कंप्यूटिंग सेवाएं तीन श्रेणियों में आती हैं: सर्विस के रूप में इंफ्रास्ट्रक्चर (IaaS), सर्विस के रूप में प्लेटफॉर्म (PaaS) और सर्विस के रूप में सॉफ्टवेयर (SaaS)।

  • सर्विस के रूप में इंफ्रास्ट्रक्चर (IaaS): उपयोगकर्ता आईटी इन्फ्रास्ट्रक्चर किराए पर लेते हैं जैसे सर्वर और वर्चुअल मशीन (VMs), स्टोरेज, नेटवर्क, ऑपरेटिंग सिस्टम।
  • सर्विस के रूप में प्लेटफॉर्म (PaaS): उपयोगकर्ता सॉफ्टवेयर ऍप्लिकेशन्स के विकास, परीक्षण, वितरण और मैनेज करने के लिए एक वातावरण किराए पर लेते हैं। उपयोगकर्ताओं को विकास के लिए आवश्यक सर्वर के इंफ्रास्ट्रक्चर, स्टोरेज, नेटवर्क और डेटाबेस को स्थापित करने या प्रबंधित करने के बारे में चिंता करने की आवश्यकता नहीं है।
  • सर्विस के रूप में सॉफ्टवेयर (SaaS): उपयोगकर्ताओं को आमतौर पर मांग और सदस्यता के आधार पर इंटरनेट पर सॉफ़्टवेयर एप्लिकेशन तक पहुंच प्राप्त होती है। उपयोगकर्ताओं को सॉफ़्टवेयर एप्लिकेशन की होस्टिंग और मैनेजिंग, बुनियादी इंफ्रास्ट्रक्चर या मेंटेनेंस, जैसे सॉफ़्टवेयर अपग्रेड और सुरक्षा पैचिंग के बारे में चिंता करने की आवश्यकता नहीं है।

कुछ सबसे बड़े क्लाउड प्रदाता ऐमज़ॉन वेब सर्विसेस, गूगल क्लाउड प्लेटफॉर्म और माइक्रोसॉफ्ट अज़ूर हैं।

डेटा साइंस के लिए क्लाउड क्यों चुनें?

डेवलपर और आईटी पेशेवर कई कारणों से क्लाउड के साथ काम करना चुनते हैं, जिनमें निम्न शामिल हैं:

  • नवाचार: आप क्लाउड प्रदाताओं द्वारा बनाई गई नवीन सेवाओं को सीधे अपने ऐप्स में एकीकृत करके अपने एप्लिकेशन को सशक्त बना सकते हैं।
  • लचक: आप केवल उन सेवाओं के लिए भुगतान करते हैं जिनकी आपको आवश्यकता है और आप सेवाओं की एक विस्तृत श्रृंखला से चुन सकते हैं। आप आमतौर पर अपनी उभरती जरूरतों के अनुसार अपनी सेवाओं का भुगतान और अनुकूलन करते हैं।
  • बजट: आपको हार्डवेयर और सॉफ़्टवेयर खरीदने, साइट पर डेटासेंटर स्थापित करने और चलाने के लिए प्रारंभिक निवेश करने की आवश्यकता नहीं है और आप केवल उसी के लिए भुगतान करते हैं जिसका आपने उपयोग किया है।
  • अनुमापकता: आपके संसाधन आपकी परियोजना की ज़रूरतों के अनुसार बड़े हो सकते हैं, जिसका अर्थ है कि आपके ऐप्स किसी भी समय बाहरी कारकों को अपनाकर, कम या ज्यादा कंप्यूटिंग शक्ति, स्टोरेज और बैंडविड्थ का उपयोग कर सकते हैं।
  • उत्पादकता: आप उन कार्यों पर समय बिताने के बजाय, जिन्हें कोई अन्य व्यक्ति प्रबंधित कर सकता है, जैसे डेटासेंटर प्रबंधित करना, अपने व्यवसाय पर ध्यान केंद्रित कर सकते हैं।
  • विश्वसनीयता: क्लाउड कम्प्यूटिंग आपके डेटा का लगातार बैकअप लेने के कई तरीके प्रदान करता है और आप संकट के समय में भी अपने व्यवसाय और सेवाओं को चालू रखने के लिए आपदा वसूली योजनाएँ स्थापित कर सकते हैं।
  • सुरक्षा: आप उन नीतियों, तकनीकों और नियंत्रणों से लाभ उठा सकते हैं जो आपकी प्रोजेक्ट की सुरक्षा को मजबूत करती हैं।

ये कुछ सबसे सामान्य कारण हैं जिनकी वजह से लोग क्लाउड सेवाओं का उपयोग करना चुनते हैं। अब जब हमें इस बात की बेहतर समझ है कि क्लाउड क्या है और इसके मुख्य लाभ क्या हैं, तो आइए डेटा के साथ काम करने वाले डेटा वैज्ञानिकों और डेवलपर्स की नौकरियों पर और अधिक विशेष रूप से देखें, और क्लाउड उन्हें कई चुनौतियों का सामना करने में कैसे मदद कर सकता है:

  • बड़ी मात्रा में डेटा स्टोर करना: बड़े सर्वरों को खरीदने, प्रबंधित करने और उनकी सुरक्षा करने के बजाय, आप अज़ूर कॉसमॉस डीबी , अज़ूर एसक्यूएल डेटाबेस और अज़ूर डेटा लेक स्टोरेज जैसे समाधानों के साथ अपने डेटा को सीधे क्लाउड में स्टोर कर सकते हैं।
  • डेटा एकीकरण करना: डेटा एकीकरण डेटा साइंस का एक अनिवार्य हिस्सा है, जो आपको डेटा संग्रह से कार्रवाई करने के लिए संक्रमण करने देता है। क्लाउड में दी जाने वाली डेटा एकीकरण सेवाओं के साथ, आप डेटा फ़ैक्टरी के साथ विभिन्न स्रोतों से डेटा एकत्र, रूपांतरित और एकीकृत कर सकते हैं।
  • डेटा प्रोसेसिंग: बड़ी मात्रा में डेटा को संसाधित करने के लिए बहुत अधिक कंप्यूटिंग शक्ति की आवश्यकता होती है, और हर किसी के पास इसके लिए पर्याप्त शक्तिशाली मशीनों तक पहुंच नहीं होती है, यही वजह है कि बहुत से लोग अपने समाधानों को चलाने और डिप्लॉय करने के लिए क्लाउड की विशाल कंप्यूटिंग शक्ति का सीधे उपयोग करना चुनते हैं।
  • डेटा एनालिटिक्स सेवाओं का उपयोग करना: अज़ूर सिनेप्स एनालिटिक्स, अज़ूर स्ट्रीम एनालिटिक्स और अज़ूर डेटाब्रिक्स जैसी क्लाउड सेवाएं आपके डेटा को कार्रवाई योग्य अंतर्दृष्टि में बदलने में आपकी सहायता करती हैं।
  • मशीन लर्निंग और डेटा इंटेलिजेंस सेवाओं का उपयोग करना: स्क्रैच से शुरू करने के बजाय, आप क्लाउड प्रदाता द्वारा पेश किए गए मशीन लर्निंग एल्गोरिदम का उपयोग अज़ूरएमएल जैसी सेवाओं के साथ कर सकते हैं। आप संज्ञानात्मक सेवाओं का भी उपयोग कर सकते हैं जैसे कि स्पीच-टू-टेक्स्ट, टेक्स्ट-टू-स्पीच, कंप्यूटर दृष्टि और बहुत कुछ।

क्लाउड में डेटा साइंस के उदाहरण

आइए कुछ परिदृश्यों को देखकर इसे और अधिक मूर्त बनाते हैं।

रीयल-टाइम सोशल मीडिया भावना विश्लेषण

हम आमतौर पर मशीन लर्निंग से शुरू होने वाले लोगों द्वारा अध्ययन किए गए परिदृश्य से शुरू करेंगे: वास्तविक समय में सोशल मीडिया की भावना का विश्लेषण।

मान लीजिए कि आप एक समाचार मीडिया वेबसाइट चलाते हैं और आप यह समझने के लिए लाइव डेटा का लाभ उठाना चाहते हैं कि आपके पाठकों की किस सामग्री में रुचि हो सकती है। इसके बारे में अधिक जानने के लिए, आप एक प्रोग्राम बना सकते हैं जो ट्विटर प्रकाशनों से डेटा का रीयल-टाइम भावना विश्लेषण करता है, उन विषयों पर जो आपके पाठकों के लिए प्रासंगिक हैं।

आप जिन प्रमुख संकेतकों को देखेंगे, वे विशिष्ट विषयों (हैशटैग) और भावना पर ट्वीट्स की मात्रा है, जो विश्लेषिकी टूल का उपयोग करके स्थापित किया जाता है जो निर्दिष्ट विषयों के आसपास भावना विश्लेषण करते हैं।

इस प्रोजेक्ट को बनाने के लिए आवश्यक स्टेप्स इस प्रकार हैं:

  • स्ट्रीमिंग इनपुट के लिए एक इवेंट हब बनाएं, जो ट्विटर से डेटा एकत्र करेगा
  • ट्विटर क्लाइंट एप्लिकेशन को कॉन्फ़िगर करें और शुरू करें, जो ट्विटर स्ट्रीमिंग एपीआई को कॉल करेगा
  • एक स्ट्रीम एनालिटिक्स जॉब बनाएं
  • जॉब इनपुट और क्वेरी निर्दिष्ट करें
  • आउटपुट सिंक बनाएं और जॉब आउटपुट निर्दिष्ट करें
  • जॉब शुरू करें

पूरी प्रक्रिया देखने के लिए प्रलेखन देखें।

वैज्ञानिक कागजात विश्लेषण

आइए इस पाठ्यक्रम के लेखकों में से एक, दिमित्री सोशनिकोव द्वारा बनाई गई परियोजना का एक और उदाहरण लें।

दिमित्री ने एक टूल बनाया जो कोविड पेपर्स का विश्लेषण करता है। इस परियोजना की समीक्षा करके, आप देखेंगे कि आप एक उपकरण कैसे बना सकते हैं जो वैज्ञानिक पत्रों से ज्ञान प्राप्त करता है, अंतर्दृष्टि प्राप्त करता है और शोधकर्ताओं को एक कुशल तरीके से कागजात के बड़े संग्रह के माध्यम से नेविगेट करने में मदद करता है।

आइए इसके लिए उपयोग किए जाने वाले विभिन्न चरणों को देखें:

  • टेक्स्ट एनालिटिक्स फॉर हेल्थ के साथ जानकारी निकालना और प्री-प्रोसेस करना
  • प्रसंस्करण को समानांतर रखने के लिए अज़ूरएमएल का उपयोग करना
  • कॉसमॉस डीबी के साथ जानकारी संग्रहीत करना और क्वेरी करना
  • पावर बीआई का उपयोग करके डेटा अन्वेषण और विज़ुअलाइज़ेशन के लिए एक इंटरैक्टिव डैशबोर्ड बनाना

पूरी प्रक्रिया देखने के लिए दिमित्री के ब्लॉग पर जाएँ।

जैसा कि आप देख सकते हैं, हम डेटा साइंस का प्रदर्शन करने के लिए कई तरह से क्लाउड सेवाओं का लाभ उठा सकते हैं।

पादटिप्पणी

स्त्रोत:

पोस्ट-लेक्चर क्विज़

पोस्ट-लेक्चर क्विज़

असाइनमेंट

मार्केट रिसर्च