You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Data-Science-For-Beginners/1-Introduction/02-ethics/translations/README.hi.md

60 KiB

डेटा नैतिकता का परिचय

(@sketchthedocs) द्वारा स्केचनोट
डेटा विज्ञान नैतिकता - @nitya द्वारा स्केचनोट

हम सब इस डाटा-फाइड दुनिया में रहने वाले डाटा-नागरिक है |

बाजार के रुझान यह दर्शाते हैं कि २०२२ तक, तीन में से एक बड़ी संस्था अपना डाटा कि खरीद और बेचना ऑनलाइन दुकानों द्वारा करेंगी | ऐप डेवलपर के रूप में, हम डेटा-संचालित अंतर्दृष्टि और एल्गोरिथम-चालित स्वचालन को दैनिक उपयोगकर्ता अनुभवों में एकीकृत करना आसान और सस्ता पाएंगे। लेकिन जैसे-जैसे AI व्यापक होता जाएगा, हमें इस तरह के एल्गोरिदम के हथियारीकरण से होने वाले संभावित नुकसान को भी समझना होगा ।

रुझान यह भी संकेत देते हैं कि हम २०२५ तक 180 ज़ेटाबाइट्स डेटा का निर्माण और उपभोग करेंगे । डेटा वैज्ञानिक के रूप में, यह हमें व्यक्तिगत डेटा तक पहुंचने के लिये अभूतपूर्व स्तर प्रदान करता है । इसका मतलब है कि हम उपयोगकर्ताओं के व्यवहार संबंधी प्रोफाइल बना सकते हैं और निर्णय लेने को इस तरह से प्रभावित कर सकते हैं जो संभावित रूप से एक मुक्त इच्छा का भ्रम पैदा करता है जब्कि वह उपयोगकर्ताओं को हमारे द्वारा पसंद किए जाने वाले परिणामों की ओर आकर्षित करना । यह डेटा गोपनीयता और उपयोगकर्ता की सुरक्षा पर भी व्यापक प्रश्न उठाता है ।

डेटा नैतिकता अब डेटा विज्ञान और इंजीनियरिंग का आवश्यक रक्षक हैं, जिससे हमें अपने डेटा-संचालित कार्यों से संभावित नुकसान और अनपेक्षित परिणामों को नीचे रखने में मदद मिलती है । AI के लिए गार्टनर हाइप साइकिल डिजिटल नैतिकता में उचित रुझानों की पहचान करता है AI के democratization और industrialization के आसपास बड़े मेगाट्रेंड के लिए प्रमुख ड्राइवर के रूप में जिम्मेदार AI की ज़िम्मेदारी और AI शासन ।

AI के लिए गार्टनर का प्रचार चक्र - २०२०

इस पाठ में, हम डेटा नैतिकता के आकर्षक क्षेत्र के बारे में सीखेंगे - मूल अवधारणाओं और चुनौतियों से लेकर केस-स्टडी और शासन जैसी एप्लाइड AI अवधारणाओं तक - जो डेटा और AI के साथ काम करने वाली समूह और संगठनों में नैतिकता संस्कृति स्थापित करने में मदद करते हैं ।

पाठ से पहले की प्रश्नोत्तरी 🎯

मूल परिभाषाएं

आइए बुनियादी शब्दावली को समझना शुरू करें ।

"नैतिकता" ग्रीक शब्द "एथिकोस" (और इसकी जड़ "एथोस") से आया है जिसका अर्थ चरित्र या नैतिक प्रकृति होता है ।

नैतिकता उन साझा मूल्यों और नैतिक सिद्धांतों के बारे में है जो समाज में हमारे व्यवहार को नियंत्रित करते हैं । नैतिकता कानूनों पर नहीं बल्कि "सही बनाम गलत" के व्यापक रूप से स्वीकृत मानदंड पर आधारित है । लेकिन , नैतिक विचार कॉर्पोरेट प्रशासन की पहल और अनुपालन के लिए अधिक प्रोत्साहन पैदा करने वाले सरकारी नियमों को प्रभावित कर सकते हैं ।

डेटा नैतिकता एक नैतिकता की नई शाखा है जो "डेटा, एल्गोरिदम और से संबंधित नैतिक समस्याओं का अध्ययन और मूल्यांकन करती है" । यहां, "डेटा" - निर्माण, रिकॉर्डिंग, अवधि, प्रसंस्करण प्रसार, साझाकरण और उपयोग से संबंधित कार्यों पर केंद्रित है, "एल्गोरिदम" AI , एजेंटों, मशीन लर्निंग और रोबोटो पर केंद्रित है, और ** "अभ्यास"** जिम्मेदार नवाचार, प्रोग्रामिंग, हैकिंग और नैतिकता कोड जैसे विषयों पर केंद्रित है ।

एप्लाइड नैतिकता नैतिक विचारों का व्यावहारिक अनुप्रयोग है । यह वास्तविक दुनिया की कार्रवाइयों, उत्पादों और प्रक्रियाओं के संदर्भ में नैतिक मुद्दों की सक्रिय रूप से जांच करने और सुधारात्मक उपाय करने की प्रक्रिया है ताकि ये हमारे परिभाषित नैतिक मूल्यों के साथ संरेखित रहें ।

नैतिकता संस्कृति यह सुनिश्चित करने के लिए operationalizing एप्लाइड नैतिकता के बारे में है कि हमारे नैतिक सिद्धांतों और प्रथाओं को पूरे संगठन में एक सुसंगत और मापनीय तरीके से अपनाया जाए । सफल नैतिक संस्कृतियाँ संगठन-व्यापी नैतिक सिद्धांतों को परिभाषित करती हैं, अनुपालन के लिए सार्थक प्रोत्साहन प्रदान करती हैं, और संगठन के हर स्तर पर वांछित व्यवहारों को प्रोत्साहित और प्रवर्धित करके नैतिक मानदंडों को सुदृढ़ करती हैं ।

नैतिकता की अवधारणाएं

इस खंड में, हम डेटा नैतिकता के लिए साझा मूल्यों (सिद्धांतों) और नैतिक चुनौतियों (समस्याओं) जैसी अवधारणाओं पर चर्चा करेंगे - और मामले के अध्ययन का पता लगाएंगे जो आपको वास्तविक दुनिया के संदर्भों में इन अवधारणाओं को समझने में मदद करते हैं ।

1. नैतिक सिद्धांत

प्रत्येक डेटा नैतिकता रणनीति नैतिक सिद्धांतों को परिभाषित करके शुरू होती है - "साझा मूल्य" जो स्वीकार्य व्यवहारों का वर्णन करते हैं, और हमारे डेटा और AI परियोजनाओं में अनुपालन कार्यों का मार्गदर्शन करते हैं । लेकिन, अधिकांश बड़े संगठन इन्हें एक नैतिक AI मिशन स्टेटमेंट या फ्रेमवर्क में रेखांकित करते हैं जो कॉर्पोरेट स्तर पर परिभाषित होता है और सभी टीमों में लगातार लागू होता है ।

उदाहरण: माइक्रोसॉफ्ट की जिम्मेदार एआई मिशन स्टेटमेंट कहती है : "हम नैतिक सिद्धांतों द्वारा संचालित AI की उन्नति के लिए प्रतिबद्ध हैं जो लोगों को सबसे पहले रखते हैं |" - नीचे दिए गए ढांचे में 6 नैतिक सिद्धांतों की वार्ना की गयी है :

माइक्रोसॉफ्ट की जिम्मेदार एआई

आइए संक्षेप में इन सिद्धांतों के बारे में सीखे | पारदर्शिता और जवाबदेही वह मूलभूत मूल्य हैं जिन पर अन्य सिद्धांतों का निर्माण किया गया है - तो चलिए वहां शुरु करते हैं :

  • जवाबदेही उपयोगकर्ताओं को उनके डेटा और AI संचालन, और इन नैतिक सिद्धांतों के अनुपालन के लिए जिम्मेदार बनाती है ।
  • पारदर्शिता सुनिश्चित करती है कि डेटा और AI क्रियाएं उपयोगकर्ताओं के लिए समझने योग्य (व्याख्या योग्य) हैं, यह बताते हुए कि निर्णयों के पीछे क्या और क्यों है ।
  • निष्पक्षता - यह सुनिश्चित करने पर ध्यान केंद्रित करती है कि AI डेटा और सिस्टम में किसी भी प्रणालीगत या निहित सामाजिक-तकनीकी पूर्वाग्रहों को संबोधित करते हुए सभी लोगों के साथ उचित व्यवहार करता है ।
  • विश्वसनीयता और अहनिकारकता - सुनिश्चित करती है कि AI- संभावित नुकसान या अनपेक्षित परिणामों को कम करते हुए परिभाषित मूल्यों के साथ लगातार काम करता है ।
  • निजता एवं सुरक्षा - डेटा वंश को समझने, और उपयोगकर्ताओं को डेटा गोपनीयता और संबंधित सुरक्षा प्रदान करने के बारे में है ।
  • समग्रता - AI समाधानों को इरादे से डिजाइन करना एवं उन्हें मानवीय आवश्यकताओं की एक विस्तृत श्रृंखला और क्षमताओं को पूरा करने के लिए अनुकूलित करने के बारे में है ।

🚨 अपने डेटा नैतिकता मिशन वक्तव्य के बारे में सोचें | अन्य संगठनों से नैतिक AI ढांचों का अन्वेषण करें - ये हैं कुछ उदाहरण IBM, Google ,एवं Facebook | इनके बीच क्या साझा मूल्य हैं? ये सिद्धांत उनके द्वारा संचालित एआई उत्पाद या उद्योग से कैसे संबंधित हैं ?

2. नैतिकता से जुडी चुनौतियां

एक बार जब हमारे पास नैतिक सिद्धांत परिभाषित हो जाते हैं, तो अगला कदम यह देखने के लिए हमारे डेटा और एआई कार्यों का मूल्यांकन करना है कि क्या वे उन साझा मूल्यों के साथ संरेखित हैं । अपने कार्यों के बारे में दो श्रेणियों में सोचें: डेटा संग्रह और एल्गोरिदम डिज़ाइन |

डेटा संग्रह के साथ, कार्रवाइयों में संभवतः पहचान योग्य जीवित व्यक्तियों के लिए व्यक्तिगत डेटा या व्यक्तिगत रूप से पहचान योग्य जानकारी शामिल होगी । इसमें गैर-व्यक्तिगत डेटा के विविध आइटम शामिल हैं, जो collectively किसी व्यक्ति की पहचान करते हैं । नैतिक चुनौतियां डेटा गोपनीयता, डेटा स्वामित्व, और उपयोगकर्ताओं के लिए सूचित सहमति और बौद्धिक संपदा अधिकार जैसे संबंधित विषयों से संबंधित हो सकती हैं ।

एल्गोरिथम डिज़ाइन के साथ, क्रियाओं में डेटासेट एकत्र करना और क्यूरेट करना शामिल होगा, फिर उनका उपयोग डेटा मॉडल को प्रशिक्षित और तैनात करने के लिए किया जाएगा जो वास्तविक दुनिया के संदर्भों में परिणामों की भविष्यवाणी या स्वचालित निर्णय लेते हैं । एल्गोरिथम डिज़ाइन के साथ, क्रियाओं में डेटासेट एकत्र करना और क्यूरेट करना शामिल होगा, फिर उनका उपयोग डेटा मॉडल को प्रशिक्षित और तैनात करने के लिए किया जाएगा जो वास्तविक दुनिया के संदर्भों में परिणामों की भविष्यवाणी या स्वचालित निर्णय लेते हैं ।

दोनों ही मामलों में, नैतिकता की चुनौतियाँ उन क्षेत्रों को उजागर करती हैं जहाँ हमारे कार्यों का हमारे साझा मूल्यों के साथ टकराव हो सकता है । इन चिंताओं का पता लगाने, सामना करने, कम करने या समाप्त करने के लिए - हमें अपने कार्यों से संबंधित नैतिक "हां या नहीं" प्रश्न पूछने की जरूरत है, फिर आवश्यकतानुसार सुधारात्मक कार्रवाई करें । आइए कुछ नैतिक चुनौतियों और उनके द्वारा उठाए गए नैतिक प्रश्नों पर एक नज़र डालें :

2.1 डेटा स्वामित्व

डेटा संग्रह में अक्सर व्यक्तिगत डेटा शामिल होता है जो डेटा विषयों की पहचान कर सकता है । डेटा स्वामित्व नियंत्रण के बारे में और उन [उपयोगकर्ता अधिकारो(https://permission.io/blog/data-ownership) के सम्भंदित है जो निर्माण , प्रसंस्करण और से संबंधित है ।

हमें जो नैतिक प्रश्न पूछने चाहिए, वे हैं :

  • डेटा का मालिक कौन है ? (उपयोगकर्ता या संगठन)
  • डेटा विषयों के पास क्या अधिकार हैं ? (उदा: पहुंच, मिटाना, सुवाह्यता)
  • संगठनों के पास क्या अधिकार हैं ? (उदा: दुर्भावनापूर्ण उपयोगकर्ता समीक्षाओं का सुधार)

2.2 सूचित सहमति

सूचित सहमति उद्देश्य, संभावित जोखिमों और विकल्पों सहित प्रासंगिक तथ्यों की पूर्ण समझ के साथ कार्रवाई (जैसे डेटा संग्रह) के लिए सहमत होने वाले उपयोगकर्ताओं के कार्य को परिभाषित करता है ।

यहां देखने लायक प्रश्न हैं :

  • क्या उपयोगकर्ता (डेटा विषय) ने डेटा कैप्चर और उपयोग के लिए अनुमति दी थी ?
  • क्या उपयोगकर्ता को वह उद्देश्य समझ में आया जिसके लिए उस डेटा को कैप्चर किया गया था ?
  • क्या उपयोगकर्ता ने उनकी भागीदारी से संभावित जोखिमों को समझा ?

2.3 बौद्धिक संपदा

बौद्धिक संपदा मानव पहल से उत्पन्न अमूर्त कृतियों को संदर्भित करता है, जिनका व्यक्तियों या व्यवसायों के लिए आर्थिक महत्व हो सकता है ।

यहां देखने लायक प्रश्न हैं :

  • क्या जमा किए गए डेटा का किसी उपयोगकर्ता या व्यवसाय के लिए आर्थिक महत्व है ?
  • क्या उपयोगकर्ता के पास यहां बौद्धिक संपदा है ?
  • क्या संगठन के पास यहां बौद्धिक संपदा है ?
  • अगर ये अधिकार मौजूद हैं, तो हम उनकी रक्षा कैसे कर रहे हैं ?

2.4 डाटा गोपनीयता

डेटा गोपनीयता या सूचना गोपनीयता व्यक्तिगत रूप से पहचान योग्य जानकारी के संबंध में उपयोगकर्ता की गोपनीयता के संरक्षण और उपयोगकर्ता की पहचान की सुरक्षा को संदर्भित करता है ।

यहां देखने लायक प्रश्न हैं :

  • क्या उपयोगकर्ताओं का (व्यक्तिगत) डेटा हैक और लीक से सुरक्षित है ?
  • क्या उपयोगकर्ताओं का डेटा केवल अधिकृत उपयोगकर्ताओं और संदर्भों के लिए सुलभ है ?
  • क्या डेटा साझा या प्रसारित होने पर उपयोगकर्ताओं की गोपनीयता बनी रहती है ?
  • क्या किसी उपयोगकर्ता की पहचान अज्ञात डेटासेट से की जा सकती है ?

2.5 भूला दिया जाने का अधिकार

भूला दिया जाने का अधिकार अतिरिक्त सुविधाएं प्रदान करता है उपयोगकर्ताओं के लिए व्यक्तिगत डेटा सुरक्षा। विशेष रूप से, यह उपयोगकर्ताओं को इंटरनेट खोजों और अन्य स्थानों से व्यक्तिगत डेटा को हटाने या हटाने का अनुरोध करने का अधिकार देता है, विशिष्ट परिस्थितियों में - उन्हें उनके खिलाफ पिछली कार्रवाई किए बिना ऑनलाइन एक नई शुरुआत करने की अनुमति देता है ।

यहां देखने लायक प्रश्न हैं :

  • क्या सिस्टम डेटा विषयों को अपना डेटा मिटाने का अनुरोध करने की अनुमति देता है ?
  • क्या उपयोगकर्ता की सहमति वापस लेने से स्वचालित डेटा मिटाना शुरू हो जाएगा ?
  • क्या डेटा सहमति के बिना या गैरकानूनी तरीके से एकत्र किया गया था ?
  • क्या हम डेटा गोपनीयता के लिए सरकारी नियमों का अनुपालन करते हैं ?

2.6 डेटासेट पूर्वाग्रह

डेटासेट या संग्रह पूर्वाग्रह एल्गोरिथम विकास के लिए डेटा के गैर-प्रतिनिधि सबसेट का चयन करने के बारे में है, जिसमें संभावित अनुचितता पैदा होती है विभिन्न समूहों के लिए भेदभाव । पूर्वाग्रह के प्रकारों में चयन या नमूना पूर्वाग्रह, स्वयंसेवी पूर्वाग्रह और साधन पूर्वाग्रह शामिल हैं ।

यहां देखने लायक प्रश्न हैं :

  • क्या हमने डेटा विषयों के प्रतिनिधि सेट की भर्ती की ?
  • क्या हमने विभिन्न पूर्वाग्रहों के लिए अपने एकत्रित या क्यूरेट किए गए डेटासेट का परीक्षण किय ा?
  • क्या हम खोजे गए पूर्वाग्रहों को कम कर सकते हैं या हटा सकते हैं ?

2.7 डेटा की गुणवत्ता

डेटा गुणवत्ता जो हमारे एल्गोरिदम को विकसित करने के लिए उपयोग किए गए क्यूरेट किए गए डेटासेट की वैधता को देखता है, यह देखने के लिए जाँच करता है कि सुविधाएँ और रिकॉर्ड सटीकता और स्थिरता के स्तर की आवश्यकताओं को पूरा करते हैं या नहीं हमारे AI उद्देश्य के लिए आवश्यक है ।

यहां देखने लायक प्रश्न हैं :

  • क्या हमने अपने उपयोग के मामले में मान्य features को कैप्चर किया ?
  • क्या डेटा विविध डेटा स्रोतों से लगातार कैप्चर किया गया था ?
  • क्या विविध स्थितियों या परिदृश्यों के लिए डेटासेट पूर्ण है ?
  • क्या वास्तविकता को प्रतिबिंबित करने में जानकारी सटीक रूप से कैप्चर की गई है ?

2.8 एल्गोरिथम की निष्पक्षता

एल्गोरिदम निष्पक्षता यह देखने के लिए जांच करता है कि क्या एल्गोरिथम डिज़ाइन व्यवस्थित रूप से डेटा विषयों के विशिष्ट उपसमूहों के साथ भेदभाव करता है जिससे संभावित नुकसान होते हैं में allocation (जहां संसाधनों को अस्वीकार कर दिया जाता है या उस समूह से रोक दिया जाता है) और सेवा की गुणवत्ता (जहां AI कुछ उपसमूहों के लिए उतना सटीक नहीं है जितना कि यह दूसरों के लिए है) ।

यहां देखने लायक प्रश्न हैं :

  • क्या हमने विविध उपसमूहों और स्थितियों के लिए मॉडल सटीकता का मूल्यांकन किया ?
  • क्या हमने संभावित नुकसान (जैसे, स्टीरियोटाइपिंग) के लिए सिस्टम की जांच की ?
  • क्या हम पहचाने गए नुकसान को कम करने के लिए डेटा को संशोधित कर सकते हैं या मॉडल को फिर से प्रशिक्षित कर सकते हैं ?

अधिक जानने के लिए AI फेयरनेस चेकलिस्ट जैसे संसाधनों का अन्वेषण करें ।

2.9 मिथ्या निरूपण

डेटा मिसरिप्रेजेंटेशन यह पूछने के बारे में है कि क्या हम एक वांछित कथा का समर्थन करने के लिए भ्रामक तरीके से ईमानदारी से रिपोर्ट किए गए डेटा से अंतर्दृष्टि का संचार कर रहे हैं ।

यहां देखने लायक प्रश्न हैं :

  • क्या हम अपूर्ण या गलत डेटा की रिपोर्ट कर रहे हैं ?
  • क्या हम डेटा को इस तरह से देख रहे हैं जिससे भ्रामक निष्कर्ष निकलते हैं ?
  • क्या हम परिणामों में हेरफेर करने के लिए चुनिंदा सांख्यिकीय तकनीकों का उपयोग कर रहे हैं ?
  • क्या ऐसे वैकल्पिक स्पष्टीकरण हैं जो एक अलग निष्कर्ष प्रस्तुत कर सकते हैं ?

2.10 मुक्त चयन

इल्यूज़न ऑफ़ फ्री चॉइस तब होता है जब सिस्टम "चॉइस आर्किटेक्चर" लोगों को पसंदीदा परिणाम लेने के लिए प्रेरित करने के लिए निर्णय लेने वाले एल्गोरिदम का उपयोग करता है। जबकि उन्हें विकल्प और नियंत्रण देना प्रतीत होता है। ये डार्क पैटर्न उपयोगकर्ताओं को सामाजिक और आर्थिक नुकसान पहुंचा सकते हैं। चूंकि उपयोगकर्ता निर्णय व्यवहार प्रोफाइल को प्रभावित करते हैं, इसलिए ये कार्रवाइयां संभावित रूप से भविष्य के विकल्पों को प्रेरित करती हैं जो इन नुकसानों के प्रभाव को बढ़ा या बढ़ा सकते हैं।

यहां देखने लायक प्रश्न हैं :

  • क्या उपयोगकर्ता ने उस विकल्प को बनाने के निहितार्थों को समझा ?
  • क्या उपयोगकर्ता (वैकल्पिक) विकल्पों और प्रत्येक के पेशेवरों और विपक्षों से अवगत था ?
  • क्या उपयोगकर्ता किसी स्वचालित या प्रभावित विकल्प को बाद में उलट सकता है ?

3. केस स्टडी

इन नैतिक चुनौतियों को वास्तविक दुनिया के संदर्भों में रखने के लिए, ऐसे मामलों के अध्ययन को देखने में मदद मिलती है जो व्यक्तियों और समाज को संभावित नुकसान और परिणामों को उजागर करते हैं, जब ऐसे नैतिकता उल्लंघनों की अनदेखी की जाती है ।

कुछ उदाहरण निम्नलिखित हैं :

नैतिकता चुनौती मामले का अध्ययन
सूचित सहमति १९७२ - टस्केगी सिफलिस अध्ययन - अध्ययन में भाग लेने वाले अफ्रीकी अमेरिकी पुरुषों को उन शोधकर्ताओं द्वारा मुफ्त चिकित्सा देखभाल का वादा किया गया था जो उनके निदान या उपचार की उपलब्धता के बारे में विषयों को सूचित करने में विफल रहे। कई विषयों की मृत्यु हो गई और साथी या बच्चे प्रभावित हुए; अध्ययन 40 साल तक चला ।
डाटा प्राइवेसी २००७ - नेटफ्लिक्स डेटा प्राइज ने शोधकर्ताओं को सिफारिश एल्गोरिदम को बेहतर बनाने में मदद करने के लिए 50K ग्राहकों_ से _10M अनाम मूवी रैंकिंग प्रदान की। हालांकि, शोधकर्ता अज्ञात डेटा को व्यक्तिगत रूप से पहचाने जाने योग्य डेटा के साथ बाहरी डेटासेट (उदाहरण के लिए, IMDb टिप्पणियों) में सहसंबंधित करने में सक्षम थे - कुछ नेटफ्लिक्स ग्राहकों को प्रभावी रूप से "डी-अनामीकरण" ।
संग्रह पूर्वाग्रह २०१३ - द सिटी ऑफ़ बोस्टन विकसित स्ट्रीट बम्प, एक ऐप जो नागरिकों को गड्ढों की रिपोर्ट करने देता है, जिससे शहर को समस्याओं को खोजने और ठीक करने के लिए बेहतर रोडवे डेटा मिलता है । हालांकि, निम्न आय वर्ग के लोगों के पास कारों और फोन तक कम पहुंच थी, जिससे इस ऐप में उनके सड़क संबंधी मुद्दे अदृश्य हो गए थे। . डेवलपर्स ने शिक्षाविदों के साथ निष्पक्षता के लिए न्यायसंगत पहुंच और डिजिटल विभाजन मुद्दों पर काम किया ।
एल्गोरिथम निष्पक्षता २०१८ - एमआईटी जेंडर शेड्स स्टडी ने लिंग वर्गीकरण एआई उत्पादों की सटीकता का मूल्यांकन किया, महिलाओं और रंग के व्यक्तियों के लिए सटीकता में अंतराल को उजागर किया । एक 2019 ऐप्पल कार्ड पुरुषों की तुलना में महिलाओं को कम क्रेडिट प्रदान करता है। दोनों ने एल्गोरिथम पूर्वाग्रह में सचित्र मुद्दों को सामाजिक-आर्थिक नुकसान की ओर अग्रसर किया ।
डेटा गलत बयानी २०२० - जॉर्जिया डिपार्टमेंट ऑफ पब्लिक हेल्थ ने जारी किया COVID-19 चार्ट जो एक्स-अक्ष पर गैर-कालानुक्रमिक क्रम के साथ पुष्टि किए गए मामलों में रुझानों के बारे में नागरिकों को गुमराह करने के लिए प्रकट हुए। यह विज़ुअलाइज़ेशन ट्रिक्स के माध्यम से गलत बयानी दिखाता है ।
स्वतंत्र चुनाव का भ्रम २०२० - लर्निंग ऐप एबीसीमाउस ने एफटीसी शिकायत को निपटाने के लिए 10 मिलियन डॉलर का भुगतान किया जहां माता-पिता भुगतान करने में फंस गए थे सदस्यता वे रद्द नहीं कर सके । यह पसंद वास्तुकला में काले पैटर्न को दिखाता है, जहां उपयोगकर्ता संभावित रूप से हानिकारक विकल्पों की ओर झुकाव कर रहे थे ।
डेटा गोपनीयता और उपयोगकर्ता अधिकार २०२१ - फेसबुक डेटा ब्रीच 530M उपयोगकर्ताओं के डेटा को उजागर किया, जिसके परिणामस्वरूप FTC को $ 5B का समझौता हुआ । हालांकि इसने डेटा पारदर्शिता और पहुंच के आसपास उपयोगकर्ता अधिकारों का उल्लंघन करने वाले उल्लंघन के उपयोगकर्ताओं को सूचित करने से इनकार कर दिया ।

अधिक केस स्टडी के बारे में चाहते हैं ? इन संसाधनों की जाँच करें :

🚨 आपके द्वारा देखी गई केस स्टडी के बारे में सोचें - क्या आपने अपने जीवन में इसी तरह की नैतिक चुनौती का अनुभव किया है, या इससे प्रभावित हुए हैं ? क्या आप कम से कम एक अन्य केस स्टडी के बारे में सोच सकते हैं जो इस खंड में चर्चा की गई नैतिक चुनौतियों में से एक को दर्शाती है ?

एप्लाइड नैतिकता

हमने वास्तविक दुनिया के संदर्भों में नैतिक अवधारणाओं, चुनौतियों और केस स्टडी के बारे में बात की है। लेकिन हम अपनी परियोजनाओं में नैतिक सिद्धांतों और प्रथाओं को लागू करना कैसे शुरू करते हैं ? और हम बेहतर शासन के लिए इन प्रथाओं को कैसे _संचालन_कृत करते हैं ? आइए कुछ वास्तविक दुनिया के समाधान देखें :

1. व्यावसायिक कोड

व्यावसायिक कोड संगठनों के लिए सदस्यों को उनके नैतिक सिद्धांतों और मिशन वक्तव्य का समर्थन करने के लिए "प्रोत्साहित" करने के लिए एक विकल्प प्रदान करते हैं । पेशेवर व्यवहार के लिए कोड नैतिक दिशानिर्देश हैं, जो कर्मचारियों या सदस्यों को उनके संगठन के सिद्धांतों के अनुरूप निर्णय लेने में मदद करते हैं । वे केवल उतने ही अच्छे हैं जितने सदस्यों से स्वैच्छिक अनुपालन; हालांकि, कई संगठन सदस्यों से अनुपालन को प्रेरित करने के लिए अतिरिक्त पुरस्कार और दंड प्रदान करते हैं ।

उदाहरणों में शामिल :

🚨 क्या आप एक पेशेवर इंजीनियरिंग या डेटा विज्ञान संगठन से संबंधित हैं ? यह देखने के लिए कि क्या वे पेशेवर आचार संहिता को परिभाषित करते हैं, उनकी साइट का अन्वेषण करें । यह उनके नैतिक सिद्धांतों के बारे में क्या कहता है ? वे सदस्यों को कोड का पालन करने के लिए "प्रोत्साहित" कैसे कर रहे हैं ?

2. नैतिकता जाँच सूची

जबकि पेशेवर कोड चिकित्सकों से आवश्यक नैतिक व्यवहार को परिभाषित करते हैं, वे प्रवर्तन में विशेष रूप से बड़े पैमाने पर परियोजनाओं में [ज्ञात सीमाएं हैं] । इसके बजाय, कई डेटा विज्ञान विशेषज्ञ चेकलिस्ट के वकील, जो सिद्धांतों को अभ्यासों से जोड़ सकते हैं अधिक नियतात्मक और कार्रवाई योग्य तरीके ।

चेकलिस्ट प्रश्नों को "हां/नहीं" कार्यों में परिवर्तित करते हैं जिन्हें संचालित किया जा सकता है, जिससे उन्हें मानक उत्पाद रिलीज वर्कफ़्लो के हिस्से के रूप में ट्रैक किया जा सकता है ।

उदाहरणों में शामिल :

  • डियोन - आसान एकीकरण के लिए कमांड-लाइन टूल के साथ उद्योग अनुशंसाओं से बनाई गई एक सामान्य-उद्देश्य डेटा नैतिकता चेकलिस्ट ।
  • गोपनीयता ऑडिट चेकलिस्ट - कानूनी और सामाजिक जोखिम के दृष्टिकोण से सूचना प्रबंधन प्रथाओं के लिए सामान्य मार्गदर्शन प्रदान करता है ।
  • एआई फेयरनेस चेकलिस्ट - एआई विकास चक्रों में निष्पक्षता जांच को अपनाने और एकीकरण का समर्थन करने के लिए एआई चिकित्सकों द्वारा बनाया गया ।
  • डेटा और एआई में नैतिकता के लिए 22 प्रश्न - डिजाइन, कार्यान्वयन, और संगठनात्मक, संदर्भों में नैतिक मुद्दों की प्रारंभिक खोज के लिए संरचित, अधिक खुला ढांचा ।

3. नैतिकता विनियम

नैतिकता साझा मूल्यों को परिभाषित करने और स्वेच्छा से सही काम करने के बारे में है । अनुपालन कानून का पालन करने के बारे में है यदि और जहां परिभाषित किया गया है । शासन मोटे तौर पर उन सभी तरीकों को शामिल करता है जिनमें संगठन नैतिक सिद्धांतों को लागू करने और स्थापित कानूनों का पालन करने के लिए काम करते हैं ।

आज, संगठनों के भीतर शासन दो रूप लेता है । सबसे पहले, यह नैतिक एआई सिद्धांतों को परिभाषित करने और संगठन में सभी एआई-संबंधित परियोजनाओं में गोद लेने के संचालन के लिए प्रथाओं को स्थापित करने के बारे में है । दूसरा, यह उन क्षेत्रों के लिए सरकार द्वारा अनिवार्य सभी डेटा सुरक्षा नियमों का अनुपालन करने के बारे में है जहां यह संचालित होता है ।

डेटा सुरक्षा और गोपनीयता नियमों के उदाहरण :

🚨 यूरोपीय संघ परिभाषित GDPR (जनरल डेटा प्रोटेक्शन रेगुलेशन) आज सबसे प्रभावशाली डेटा गोपनीयता नियमों में से एक है । क्या आप जानते हैं कि यह नागरिकों की डिजिटल गोपनीयता और व्यक्तिगत डेटा की सुरक्षा के लिए 8 उपयोगकर्ता अधिकार को भी परिभाषित करता है ? जानें कि ये क्या हैं, और क्यों मायने रखते हैं ।

4. नैतिकता संस्कृति

ध्यान दें कि अनुपालन ("कानून के पत्र को पूरा करने के लिए पर्याप्त प्रयास करना") और प्रणालीगत मुद्दों को संबोधित करने के बीच एक अमूर्त अंतर है । / 4) (जैसे ossification, सूचना विषमता, और वितरण संबंधी अनुचितता) जो AI के शस्त्रीकरण को गति दे सकता है ।

बाद वाले को नैतिक संस्कृतियों को परिभाषित करने के लिए सहयोगात्मक दृष्टिकोण की आवश्यकता होती है, जो पूरे संगठनों में भावनात्मक संबंध और सुसंगत साझा मूल्यों का निर्माण करते हैं । यह संगठनों में अधिक औपचारिक डेटा नैतिकता संस्कृतियों की मांग करता है - किसी को एंडोन कॉर्ड को खींचने की अनुमति देता है (इस प्रक्रिया में नैतिकता संबंधी चिंताओं को जल्दी उठाने के लिए) और एआई परियोजनाओं में नैतिक मूल्यांकन (उदाहरण के लिए, भर्ती में) एक मुख्य मानदंड टीम गठन करना ।


व्याख्यान के बाद प्रश्नोत्तरी 🎯

समीक्षा और स्व अध्ययन

पाठ्यक्रम और पुस्तकें मूल नैतिकता अवधारणाओं और चुनौतियों को समझने में मदद करती हैं, जबकि केस स्टडी और उपकरण वास्तविक दुनिया के संदर्भों में लागू नैतिकता प्रथाओं के साथ मदद करते हैं। शुरू करने के लिए यहां कुछ संसाधन दिए गए हैं।

कार्यभार

डेटा एथिक्स केस स्टडी लिखें