You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
158 lines
31 KiB
158 lines
31 KiB
<!--
|
|
CO_OP_TRANSLATOR_METADATA:
|
|
{
|
|
"original_hash": "627a9124f5f45e7bcea41a96e07f563a",
|
|
"translation_date": "2025-09-18T14:58:09+00:00",
|
|
"source_file": "README.md",
|
|
"language_code": "pa"
|
|
}
|
|
-->
|
|
# ਡਾਟਾ ਸਾਇੰਸ ਸ਼ੁਰੂਆਤੀ ਲਈ - ਇੱਕ ਪਾਠਕ੍ਰਮ
|
|
|
|
Azure ਕਲਾਉਡ ਐਡਵੋਕੇਟਸ ਮਾਈਕਰੋਸਾਫਟ ਵਿੱਚ 10 ਹਫ਼ਤਿਆਂ, 20 ਪਾਠਾਂ ਦਾ ਪਾਠਕ੍ਰਮ ਪੇਸ਼ ਕਰਨ ਵਿੱਚ ਖੁਸ਼ ਹਨ ਜੋ ਡਾਟਾ ਸਾਇੰਸ ਬਾਰੇ ਹੈ। ਹਰ ਪਾਠ ਵਿੱਚ ਪਾਠ ਤੋਂ ਪਹਿਲਾਂ ਅਤੇ ਪਾਠ ਤੋਂ ਬਾਅਦ ਕਵਿਜ਼, ਪਾਠ ਪੂਰਾ ਕਰਨ ਲਈ ਲਿਖਤ ਹਦਾਇਤਾਂ, ਇੱਕ ਹੱਲ ਅਤੇ ਇੱਕ ਅਸਾਈਨਮੈਂਟ ਸ਼ਾਮਲ ਹੈ। ਸਾਡੇ ਪ੍ਰੋਜੈਕਟ-ਅਧਾਰਿਤ ਪੈਡਾਗੌਜੀ ਤੁਹਾਨੂੰ ਸਿਖਾਉਣ ਦੌਰਾਨ ਬਣਾਉਣ ਦੀ ਆਗਿਆ ਦਿੰਦੀ ਹੈ, ਜੋ ਨਵੀਆਂ ਹੁਨਰਾਂ ਨੂੰ 'ਟਿਕਾਉਣ' ਦਾ ਸਾਬਤ ਤਰੀਕਾ ਹੈ।
|
|
|
|
**ਸਾਡੇ ਲੇਖਕਾਂ ਨੂੰ ਦਿਲੋਂ ਧੰਨਵਾਦ:** [ਜੈਸਮਿਨ ਗ੍ਰੀਨਵੇ](https://www.twitter.com/paladique), [ਦਿਮਿਤਰੀ ਸੋਸ਼ਨਿਕੋਵ](http://soshnikov.com), [ਨਿਤਿਆ ਨਰਸਿੰਹਨ](https://twitter.com/nitya), [ਜੇਲਨ ਮੈਕਗੀ](https://twitter.com/JalenMcG), [ਜੈਨ ਲੂਪਰ](https://twitter.com/jenlooper), [ਮੌਦ ਲੇਵੀ](https://twitter.com/maudstweets), [ਟਿਫਨੀ ਸੌਟਰ](https://twitter.com/TiffanySouterre), [ਕ੍ਰਿਸਟੋਫਰ ਹੈਰਿਸਨ](https://www.twitter.com/geektrainer)।
|
|
|
|
**🙏 ਵਿਸ਼ੇਸ਼ ਧੰਨਵਾਦ 🙏 ਸਾਡੇ [ਮਾਈਕਰੋਸਾਫਟ ਸਟੂਡੈਂਟ ਐਮਬੈਸਡਰ](https://studentambassadors.microsoft.com/) ਲੇਖਕਾਂ, ਸਮੀਖਾਕਾਰਾਂ ਅਤੇ ਸਮੱਗਰੀ ਯੋਗਦਾਨਕਰਤਿਆਂ ਨੂੰ,** ਖਾਸ ਤੌਰ 'ਤੇ ਆਰਯਨ ਅਰੋੜਾ, [ਅਦਿਤਿਆ ਗਰਗ](https://github.com/AdityaGarg00), [ਅਲੋਂਡਰਾ ਸਾਂਚੇਜ਼](https://www.linkedin.com/in/alondra-sanchez-molina/), [ਅੰਕਿਤਾ ਸਿੰਘ](https://www.linkedin.com/in/ankitasingh007), [ਅਨੁਪਮ ਮਿਸ਼ਰਾ](https://www.linkedin.com/in/anupam--mishra/), [ਅਰਪਿਤਾ ਦਾਸ](https://www.linkedin.com/in/arpitadas01/), ਛੈਲਬਿਹਾਰੀ ਦੁਬੇ, [ਦਿਬਰੀ ਨਸੋਫਰ](https://www.linkedin.com/in/dibrinsofor), [ਦਿਸ਼ਿਤਾ ਭਾਸਿਨ](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [ਮਜਦ ਸਾਫੀ](https://www.linkedin.com/in/majd-s/), [ਮੈਕਸ ਬਲਮ](https://www.linkedin.com/in/max-blum-6036a1186/), [ਮਿਗੁਏਲ ਕੋਰੇਆ](https://www.linkedin.com/in/miguelmque/), [ਮੋਹੰਮਾ ਇਫ਼ਤਖਰ (ਇਫ਼ਤੂ) ਇਬਨੇ ਜਲਾਲ](https://twitter.com/iftu119), [ਨਾਵਰਿਨ ਤਬਸੁਮ](https://www.linkedin.com/in/nawrin-tabassum), [ਰੇਮੰਡ ਵਾਂਗਸਾ ਪੁਤਰਾ](https://www.linkedin.com/in/raymond-wp/), [ਰੋਹਿਤ ਯਾਦਵ](https://www.linkedin.com/in/rty2423), ਸਮਰਿਧੀ ਸ਼ਰਮਾ, [ਸੰਯਾ ਸਿੰਹਾ](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200), [ਸ਼ੀਨਾ ਨਰੂਲਾ](https://www.linkedin.com/in/sheena-narua-n/), [ਤੌਕੀਰ ਅਹਿਮਦ](https://www.linkedin.com/in/tauqeerahmad5201/), ਯੋਗੇਂਦਰਸਿੰਘ ਪਵਾਰ, [ਵਿਦੁਸ਼ੀ ਗੁਪਤਾ](https://www.linkedin.com/in/vidushi-gupta07/), [ਜਸਲੀਨ ਸੋਂਧੀ](https://www.linkedin.com/in/jasleen-sondhi/)।
|
|
|
|
||
|
|
|:---:|
|
|
| ਸ਼ੁਰੂਆਤੀ ਲਈ ਡਾਟਾ ਸਾਇੰਸ - _[@nitya](https://twitter.com/nitya) ਦੁਆਰਾ ਸਕੈਚਨੋਟ_ |
|
|
|
|
### 🌐 ਬਹੁ-ਭਾਸ਼ਾ ਸਹਾਇਤਾ
|
|
|
|
#### GitHub Action ਰਾਹੀਂ ਸਹਾਇਤ (ਆਟੋਮੈਟਿਕ ਅਤੇ ਹਮੇਸ਼ਾ ਅਪ-ਟੂ-ਡੇਟ)
|
|
|
|
[ਫਰੈਂਚ](../fr/README.md) | [ਸਪੈਨਿਸ਼](../es/README.md) | [ਜਰਮਨ](../de/README.md) | [ਰੂਸੀ](../ru/README.md) | [ਅਰਬੀ](../ar/README.md) | [ਫ਼ਾਰਸੀ](../fa/README.md) | [ਉਰਦੂ](../ur/README.md) | [ਚੀਨੀ (ਸਰਲ)](../zh/README.md) | [ਚੀਨੀ (ਰਵਾਇਤੀ, ਮਕਾਉ)](../mo/README.md) | [ਚੀਨੀ (ਰਵਾਇਤੀ, ਹਾਂਗਕਾਂਗ)](../hk/README.md) | [ਚੀਨੀ (ਰਵਾਇਤੀ, ਤਾਈਵਾਨ)](../tw/README.md) | [ਜਾਪਾਨੀ](../ja/README.md) | [ਕੋਰੀਆਈ](../ko/README.md) | [ਹਿੰਦੀ](../hi/README.md) | [ਬੰਗਾਲੀ](../bn/README.md) | [ਮਰਾਠੀ](../mr/README.md) | [ਨੇਪਾਲੀ](../ne/README.md) | [ਪੰਜਾਬੀ (ਗੁਰਮੁਖੀ)](./README.md) | [ਪੁਰਤਗਾਲੀ (ਪੁਰਤਗਾਲ)](../pt/README.md) | [ਪੁਰਤਗਾਲੀ (ਬ੍ਰਾਜ਼ੀਲ)](../br/README.md) | [ਇਤਾਲਵੀ](../it/README.md) | [ਪੋਲਿਸ਼](../pl/README.md) | [ਤੁਰਕੀ](../tr/README.md) | [ਯੂਨਾਨੀ](../el/README.md) | [ਥਾਈ](../th/README.md) | [ਸਵੀਡਿਸ਼](../sv/README.md) | [ਡੈਨਿਸ਼](../da/README.md) | [ਨਾਰਵੇਜੀ](../no/README.md) | [ਫਿਨਿਸ਼](../fi/README.md) | [ਡੱਚ](../nl/README.md) | [ਹਿਬਰੂ](../he/README.md) | [ਵਿਯਤਨਾਮੀ](../vi/README.md) | [ਇੰਡੋਨੇਸ਼ੀਆਈ](../id/README.md) | [ਮਲੇ](../ms/README.md) | [ਟੈਗਾਲੋਗ (ਫਿਲੀਪੀਨੋ)](../tl/README.md) | [ਸਵਾਹਿਲੀ](../sw/README.md) | [ਹੰਗਰੀ](../hu/README.md) | [ਚੈਕ](../cs/README.md) | [ਸਲੋਵਾਕ](../sk/README.md) | [ਰੋਮਾਨੀ](../ro/README.md) | [ਬੁਲਗਾਰੀਆਈ](../bg/README.md) | [ਸਰਬੀਆਈ (ਸਿਰਿਲਿਕ)](../sr/README.md) | [ਕਰੋਏਸ਼ੀਆਈ](../hr/README.md) | [ਸਲੋਵੇਨੀਆਈ](../sl/README.md) | [ਯੂਕਰੇਨੀ](../uk/README.md) | [ਬਰਮੀ (ਮਿਆਂਮਾਰ)](../my/README.md)
|
|
|
|
**ਜੇ ਤੁਸੀਂ ਹੋਰ ਭਾਸ਼ਾਵਾਂ ਵਿੱਚ ਅਨੁਵਾਦ ਕਰਵਾਉਣਾ ਚਾਹੁੰਦੇ ਹੋ ਤਾਂ ਸਹਾਇਤ ਭਾਸ਼ਾਵਾਂ ਦੀ ਸੂਚੀ [ਇੱਥੇ](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md) ਦਿੱਤੀ ਗਈ ਹੈ।**
|
|
|
|
#### ਸਾਡੇ ਸਮੁਦਾਇ ਵਿੱਚ ਸ਼ਾਮਲ ਹੋਵੋ
|
|
[](https://aka.ms/ds4beginners/discord)
|
|
|
|
ਸਾਡੇ ਕੋਲ ਇੱਕ Discord 'AI ਨਾਲ ਸਿੱਖੋ' ਸੀਰੀਜ਼ ਚੱਲ ਰਹੀ ਹੈ। ਹੋਰ ਜਾਣਕਾਰੀ ਪ੍ਰਾਪਤ ਕਰੋ ਅਤੇ ਸਾਡੇ ਨਾਲ [Learn with AI Series](https://aka.ms/learnwithai/discord) ਵਿੱਚ 18 - 25 ਸਤੰਬਰ, 2025 ਨੂੰ ਸ਼ਾਮਲ ਹੋਵੋ। ਤੁਸੀਂ GitHub Copilot ਨੂੰ ਡਾਟਾ ਸਾਇੰਸ ਲਈ ਵਰਤਣ ਦੇ ਟਿੱਪਸ ਅਤੇ ਟ੍ਰਿਕਸ ਸਿੱਖੋਗੇ।
|
|
|
|

|
|
|
|
# ਕੀ ਤੁਸੀਂ ਵਿਦਿਆਰਥੀ ਹੋ?
|
|
|
|
ਹੇਠਾਂ ਦਿੱਤੇ ਸਰੋਤਾਂ ਨਾਲ ਸ਼ੁਰੂਆਤ ਕਰੋ:
|
|
|
|
- [ਵਿਦਿਆਰਥੀ ਹੱਬ ਪੇਜ](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) ਇਸ ਪੇਜ ਵਿੱਚ, ਤੁਹਾਨੂੰ ਸ਼ੁਰੂਆਤੀ ਸਰੋਤ, ਵਿਦਿਆਰਥੀ ਪੈਕ ਅਤੇ ਮੁਫ਼ਤ ਸਰਟੀਫਿਕੇਟ ਵਾਊਚਰ ਪ੍ਰਾਪਤ ਕਰਨ ਦੇ ਤਰੀਕੇ ਮਿਲਣਗੇ। ਇਹ ਇੱਕ ਪੇਜ ਹੈ ਜਿਸਨੂੰ ਤੁਸੀਂ ਬੁੱਕਮਾਰਕ ਕਰਨਾ ਚਾਹੁੰਦੇ ਹੋ ਅਤੇ ਸਮੇਂ-ਸਮੇਂ 'ਤੇ ਚੈੱਕ ਕਰਨਾ ਚਾਹੁੰਦੇ ਹੋ ਕਿਉਂਕਿ ਅਸੀਂ ਘੱਟੋ-ਘੱਟ ਮਹੀਨਾਵਾਰ ਸਮੱਗਰੀ ਬਦਲਦੇ ਹਾਂ।
|
|
- [ਮਾਈਕਰੋਸਾਫਟ ਲਰਨ ਸਟੂਡੈਂਟ ਐਮਬੈਸਡਰ](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) ਵਿਦਿਆਰਥੀ ਐਮਬੈਸਡਰਾਂ ਦੇ ਗਲੋਬਲ ਸਮੁਦਾਇ ਵਿੱਚ ਸ਼ਾਮਲ ਹੋਵੋ, ਇਹ ਮਾਈਕਰੋਸਾਫਟ ਵਿੱਚ ਤੁਹਾਡਾ ਰਸਤਾ ਹੋ ਸਕਦਾ ਹੈ।
|
|
|
|
# ਸ਼ੁਰੂਆਤ ਕਰਨਾ
|
|
|
|
> **ਅਧਿਆਪਕਾਂ**: ਅਸੀਂ [ਕੁਝ ਸੁਝਾਅ ਸ਼ਾਮਲ ਕੀਤੇ ਹਨ](for-teachers.md) ਕਿ ਇਸ ਪਾਠਕ੍ਰਮ ਨੂੰ ਕਿਵੇਂ ਵਰਤਣਾ ਹੈ। ਸਾਡੇ ਵਿਚਾਰ-ਵਟਾਂਦਰੇ ਫੋਰਮ ਵਿੱਚ [ਫੀਡਬੈਕ](https://github.com/microsoft/Data-Science-For-Beginners/discussions) ਦੇਣ ਲਈ ਸਵਾਗਤ ਹੈ!
|
|
|
|
> **[ਵਿਦਿਆਰਥੀ](https://aka.ms/student-page)**: ਇਸ ਪਾਠਕ੍ਰਮ ਨੂੰ ਆਪਣੇ ਆਪ ਵਰਤਣ ਲਈ, ਪੂਰੇ ਰਿਪੋ ਨੂੰ ਫੋਰਕ ਕਰੋ ਅਤੇ ਆਪਣੇ ਆਪ ਅਭਿਆਸ ਪੂਰੇ ਕਰੋ, ਪਾਠ ਤੋਂ ਪਹਿਲਾਂ ਕਵਿਜ਼ ਨਾਲ ਸ਼ੁਰੂ ਕਰੋ। ਫਿਰ ਪਾਠ ਪੜ੍ਹੋ ਅਤੇ ਬਾਕੀ ਗਤੀਵਿਧੀਆਂ ਪੂਰੀਆਂ ਕਰੋ। ਪਾਠਾਂ ਨੂੰ ਸਮਝ ਕੇ ਪ੍ਰੋਜੈਕਟ ਬਣਾਉਣ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰੋ ਨਾ ਕਿ ਹੱਲ ਕੋਡ ਨੂੰ ਕਾਪੀ ਕਰਨ ਦੀ; ਹਾਲਾਂਕਿ, ਉਹ ਕੋਡ /solutions ਫੋਲਡਰ ਵਿੱਚ ਪ੍ਰੋਜੈਕਟ-ਅਧਾਰਿਤ ਪਾਠਾਂ ਵਿੱਚ ਉਪਲਬਧ ਹੈ। ਇੱਕ ਹੋਰ ਵਿਚਾਰ ਇਹ ਹੋ ਸਕਦਾ ਹੈ ਕਿ ਦੋਸਤਾਂ ਨਾਲ ਇੱਕ ਅਧਿਐਨ ਸਮੂਹ ਬਣਾਓ ਅਤੇ ਸਮੱਗਰੀ ਨੂੰ ਇਕੱਠੇ ਪੜ੍ਹੋ। ਹੋਰ ਅਧਿਐਨ ਲਈ, ਅਸੀਂ [ਮਾਈਕਰੋਸਾਫਟ ਲਰਨ](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) ਦੀ ਸਿਫਾਰਸ਼ ਕਰਦੇ ਹਾਂ।
|
|
|
|
## ਟੀਮ ਨਾਲ ਮਿਲੋ
|
|
|
|
[](https://youtu.be/8mzavjQSMM4 "ਪ੍ਰੋਮੋ ਵੀਡੀਓ")
|
|
|
|
**Gif ਦੁਆਰਾ** [ਮੋਹਿਤ ਜੈਸਲ](https://www.linkedin.com/in/mohitjaisal)
|
|
|
|
> 🎥 ਉਪਰੋਕਤ ਚਿੱਤਰ 'ਤੇ ਕਲਿਕ ਕਰੋ ਪ੍ਰੋਜੈਕਟ ਅਤੇ ਉਹ ਲੋਕਾਂ ਬਾਰੇ ਵੀਡੀਓ ਦੇਖਣ ਲਈ ਜਿਨ੍ਹਾਂ ਨੇ ਇਸਨੂੰ ਬਣਾਇਆ!
|
|
|
|
## ਪੈਡਾਗੌਜੀ
|
|
|
|
ਅਸੀਂ ਇਸ ਪਾਠਕ੍ਰਮ ਨੂੰ ਬਣਾਉਣ ਦੌਰਾਨ ਦੋ ਪੈਡਾਗੌਜੀਕਲ ਸਿਧਾਂਤਾਂ ਨੂੰ ਚੁਣਿਆ ਹੈ: ਇਹ ਯਕੀਨੀ ਬਣਾਉਣਾ ਕਿ ਇਹ ਪ੍ਰੋਜੈਕਟ-ਅਧਾਰਿਤ ਹੈ ਅਤੇ ਇਹ ਵਾਰੰ-ਵਾਰ ਕਵਿਜ਼ ਸ਼ਾਮਲ ਕਰਦਾ ਹੈ। ਇਸ ਸੀਰੀਜ਼ ਦੇ ਅੰਤ ਤੱਕ, ਵਿਦਿਆਰਥੀ ਡਾਟਾ ਸਾਇੰਸ ਦੇ ਮੁੱਢਲੇ ਸਿਧਾਂਤਾਂ ਸਿੱਖ ਚੁੱਕੇ ਹੋਣਗੇ, ਜਿਸ ਵਿੱਚ ਨੈਤਿਕ ਧਾਰਨਾਵਾਂ, ਡਾਟਾ ਤਿਆਰੀ, ਡਾਟਾ ਨਾਲ ਕੰਮ ਕਰਨ ਦੇ ਵੱਖ-ਵੱਖ ਤਰੀਕੇ, ਡਾਟਾ ਵਿਜ਼ੁਅਲਾਈਜ਼ੇਸ਼ਨ, ਡਾਟਾ ਵਿਸ਼ਲੇਸ਼ਣ, ਡਾਟਾ ਸਾਇੰਸ ਦੇ ਅਸਲ-ਜਗਤ ਦੇ ਉਪਯੋਗ ਅਤੇ ਹੋਰ ਸ਼ਾਮਲ ਹਨ।
|
|
|
|
ਇਸ ਤੋਂ ਇਲਾਵਾ, ਕਲਾਸ ਤੋਂ ਪਹਿਲਾਂ ਇੱਕ ਘੱਟ-ਦਬਾਅ ਵਾਲਾ ਕਵਿਜ਼ ਵਿਦਿਆਰਥੀ ਨੂੰ ਇੱਕ ਵਿਸ਼ੇ ਸਿੱਖਣ ਵੱਲ ਧਿਆਨ ਕੇਂਦਰਿਤ ਕਰਨ ਲਈ ਸੈਟ ਕਰਦਾ ਹੈ, ਜਦਕਿ ਕਲਾਸ ਤੋਂ ਬਾਅਦ ਦੂਜਾ ਕਵਿਜ਼ ਹੋਰ ਰਿਟੇਨਸ਼ਨ ਯਕੀਨੀ ਬਣਾਉਂਦਾ ਹੈ। ਇਹ ਪਾਠਕ੍ਰਮ ਲਚਕੀਲਾ ਅਤੇ ਮਜ਼ੇਦਾਰ ਬਣਾਇਆ ਗਿਆ ਹੈ ਅਤੇ ਇਸਨੂੰ ਪੂਰੇ ਜਾਂ ਅੰਸ਼ਿਕ ਤੌਰ 'ਤੇ ਲਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਪ੍ਰੋਜੈਕਟ ਛੋਟੇ ਸ਼ੁਰੂ ਹੁੰਦੇ ਹਨ ਅਤੇ 10 ਹਫ਼ਤਿਆਂ ਦੇ ਚੱਕਰ ਦੇ ਅੰਤ ਤੱਕ ਵਧਦੇ ਹੀ ਜਟਿਲ ਹੋ ਜਾਂਦੇ ਹਨ।
|
|
ਸਾਡੇ [Code of Conduct](CODE_OF_CONDUCT.md), [Contributing](CONTRIBUTING.md), [Translation](TRANSLATIONS.md) ਦਿਸ਼ਾ-ਨਿਰਦੇਸ਼ਾਂ ਨੂੰ ਵੇਖੋ। ਅਸੀਂ ਤੁਹਾਡੀ ਰਚਨਾਤਮਕ ਪ੍ਰਤੀਕ੍ਰਿਆ ਦਾ ਸਵਾਗਤ ਕਰਦੇ ਹਾਂ!
|
|
## ਹਰ ਪਾਠ ਵਿੱਚ ਸ਼ਾਮਲ ਹੈ:
|
|
|
|
- ਵਿਕਲਪਿਕ ਸਕੈਚਨੋਟ
|
|
- ਵਿਕਲਪਿਕ ਸਹਾਇਕ ਵੀਡੀਓ
|
|
- ਪਾਠ ਤੋਂ ਪਹਿਲਾਂ ਵਾਰਮਅਪ ਕਵਿਜ਼
|
|
- ਲਿਖਤ ਪਾਠ
|
|
- ਪ੍ਰੋਜੈਕਟ-ਅਧਾਰਿਤ ਪਾਠਾਂ ਲਈ, ਪ੍ਰੋਜੈਕਟ ਬਣਾਉਣ ਲਈ ਕਦਮ-ਦਰ-ਕਦਮ ਗਾਈਡ
|
|
- ਗਿਆਨ ਦੀ ਜਾਂਚ
|
|
- ਇੱਕ ਚੁਣੌਤੀ
|
|
- ਸਹਾਇਕ ਪੜ੍ਹਾਈ
|
|
- ਅਸਾਈਨਮੈਂਟ
|
|
- [ਪਾਠ ਤੋਂ ਬਾਅਦ ਕਵਿਜ਼](https://ff-quizzes.netlify.app/en/)
|
|
|
|
> **ਕਵਿਜ਼ਾਂ ਬਾਰੇ ਇੱਕ ਨੋਟ**: ਸਾਰੀਆਂ ਕਵਿਜ਼ਾਂ `Quiz-App` ਫੋਲਡਰ ਵਿੱਚ ਸ਼ਾਮਲ ਹਨ, ਜੋ ਕਿ 40 ਕੁੱਲ ਕਵਿਜ਼ਾਂ ਦੇ ਤਿੰਨ ਪ੍ਰਸ਼ਨਾਂ ਦੇ ਸਮੂਹ ਹਨ। ਇਹ ਪਾਠਾਂ ਵਿੱਚੋਂ ਲਿੰਕ ਕੀਤੇ ਗਏ ਹਨ, ਪਰ ਕਵਿਜ਼ ਐਪ ਨੂੰ ਸਥਾਨਕ ਤੌਰ 'ਤੇ ਚਲਾਇਆ ਜਾ ਸਕਦਾ ਹੈ ਜਾਂ Azure 'ਤੇ ਡਿਪਲੌਇ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ; `quiz-app` ਫੋਲਡਰ ਵਿੱਚ ਦਿੱਤੇ ਨਿਰਦੇਸ਼ਾਂ ਦੀ ਪਾਲਣਾ ਕਰੋ। ਇਹ ਹੌਲੀ-ਹੌਲੀ ਸਥਾਨਕ ਭਾਸ਼ਾਵਾਂ ਵਿੱਚ ਅਨੁਵਾਦਿਤ ਕੀਤੇ ਜਾ ਰਹੇ ਹਨ।
|
|
|
|
## ਪਾਠ
|
|
|
|
||
|
|
|:---:|
|
|
| ਸ਼ੁਰੂਆਤੀ ਡੇਟਾ ਸਾਇੰਸ: ਰੋਡਮੈਪ - _[@nitya](https://twitter.com/nitya) ਦੁਆਰਾ ਸਕੈਚਨੋਟ_ |
|
|
|
|
| ਪਾਠ ਨੰਬਰ | ਵਿਸ਼ਾ | ਪਾਠ ਸਮੂਹ | ਸਿੱਖਣ ਦੇ ਉਦੇਸ਼ | ਲਿੰਕ ਕੀਤਾ ਪਾਠ | ਲੇਖਕ |
|
|
| :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
|
|
| 01 | ਡੇਟਾ ਸਾਇੰਸ ਦੀ ਪਰਿਭਾਸ਼ਾ | [ਪ੍ਰਸਤਾਵਨਾ](1-Introduction/README.md) | ਡੇਟਾ ਸਾਇੰਸ ਦੇ ਮੁੱਢਲੇ ਧਾਰਨਾ ਸਿੱਖੋ ਅਤੇ ਇਹ ਕਿਵੇਂ ਕ੍ਰਿਤ੍ਰਿਮ ਬੁੱਧੀ, ਮਸ਼ੀਨ ਲਰਨਿੰਗ ਅਤੇ ਵੱਡੇ ਡੇਟਾ ਨਾਲ ਸੰਬੰਧਿਤ ਹੈ। | [ਪਾਠ](1-Introduction/01-defining-data-science/README.md) [ਵੀਡੀਓ](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
|
|
| 02 | ਡੇਟਾ ਸਾਇੰਸ ਨੈਤਿਕਤਾ | [ਪ੍ਰਸਤਾਵਨਾ](1-Introduction/README.md) | ਡੇਟਾ ਨੈਤਿਕਤਾ ਦੇ ਧਾਰਨਾ, ਚੁਣੌਤੀਆਂ ਅਤੇ ਫਰੇਮਵਰਕ। | [ਪਾਠ](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
|
|
| 03 | ਡੇਟਾ ਦੀ ਪਰਿਭਾਸ਼ਾ | [ਪ੍ਰਸਤਾਵਨਾ](1-Introduction/README.md) | ਡੇਟਾ ਕਿਵੇਂ ਵਰਗਬੱਧ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਅਤੇ ਇਸਦੇ ਆਮ ਸਰੋਤ। | [ਪਾਠ](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
|
|
| 04 | ਅੰਕੜੇ ਅਤੇ ਸੰਭਾਵਨਾ ਦਾ ਪਰਿਚਯ | [ਪ੍ਰਸਤਾਵਨਾ](1-Introduction/README.md) | ਡੇਟਾ ਨੂੰ ਸਮਝਣ ਲਈ ਸੰਭਾਵਨਾ ਅਤੇ ਅੰਕੜੇ ਦੇ ਗਣਿਤਕ ਤਕਨੀਕਾਂ। | [ਪਾਠ](1-Introduction/04-stats-and-probability/README.md) [ਵੀਡੀਓ](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
|
|
| 05 | ਰਿਲੇਸ਼ਨਲ ਡੇਟਾ ਨਾਲ ਕੰਮ ਕਰਨਾ | [ਡੇਟਾ ਨਾਲ ਕੰਮ ਕਰਨਾ](2-Working-With-Data/README.md) | ਰਿਲੇਸ਼ਨਲ ਡੇਟਾ ਦਾ ਪਰਿਚਯ ਅਤੇ ਸਟ੍ਰਕਚਰਡ ਕਵੈਰੀ ਲੈਂਗਵੇਜ (SQL) ਨਾਲ ਰਿਲੇਸ਼ਨਲ ਡੇਟਾ ਦੀ ਖੋਜ ਅਤੇ ਵਿਸ਼ਲੇਸ਼ਣ ਦੇ ਮੁੱਢਲੇ ਬੁਨਿਆਦੀਆਂ। | [ਪਾਠ](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
|
|
| 06 | NoSQL ਡੇਟਾ ਨਾਲ ਕੰਮ ਕਰਨਾ | [ਡੇਟਾ ਨਾਲ ਕੰਮ ਕਰਨਾ](2-Working-With-Data/README.md) | ਗੈਰ-ਰਿਲੇਸ਼ਨਲ ਡੇਟਾ ਦਾ ਪਰਿਚਯ, ਇਸਦੇ ਵੱਖ-ਵੱਖ ਕਿਸਮਾਂ ਅਤੇ ਦਸਤਾਵੇਜ਼ ਡੇਟਾਬੇਸ ਦੀ ਖੋਜ ਅਤੇ ਵਿਸ਼ਲੇਸ਼ਣ ਦੇ ਮੁੱਢਲੇ ਬੁਨਿਆਦੀਆਂ। | [ਪਾਠ](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
|
|
| 07 | Python ਨਾਲ ਕੰਮ ਕਰਨਾ | [ਡੇਟਾ ਨਾਲ ਕੰਮ ਕਰਨਾ](2-Working-With-Data/README.md) | Pandas ਵਰਗੀਆਂ ਲਾਇਬ੍ਰੇਰੀਆਂ ਨਾਲ ਡੇਟਾ ਦੀ ਖੋਜ ਲਈ Python ਦੀ ਵਰਤੋਂ ਦੇ ਮੁੱਢਲੇ ਬੁਨਿਆਦੀਆਂ। Python ਪ੍ਰੋਗਰਾਮਿੰਗ ਦੀ ਬੁਨਿਆਦੀ ਸਮਝ ਸਿਫਾਰਸ਼ੀ ਹੈ। | [ਪਾਠ](2-Working-With-Data/07-python/README.md) [ਵੀਡੀਓ](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
|
|
| 08 | ਡੇਟਾ ਤਿਆਰੀ | [ਡੇਟਾ ਨਾਲ ਕੰਮ ਕਰਨਾ](2-Working-With-Data/README.md) | ਗੁੰਝਲਦਾਰ, ਗਲਤ ਜਾਂ ਅਧੂਰੇ ਡੇਟਾ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ ਡੇਟਾ ਸਾਫ਼ ਕਰਨ ਅਤੇ ਰੂਪਾਂਤਰਿਤ ਕਰਨ ਦੀਆਂ ਤਕਨੀਕਾਂ। | [ਪਾਠ](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
|
|
| 09 | ਮਾਤਰਾ ਦੀ ਵਿਜ਼ੁਅਲਾਈਜ਼ੇਸ਼ਨ | [ਡੇਟਾ ਵਿਜ਼ੁਅਲਾਈਜ਼ੇਸ਼ਨ](3-Data-Visualization/README.md) | Matplotlib ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਪੰਛੀਆਂ ਦੇ ਡੇਟਾ ਨੂੰ ਵਿਜ਼ੁਅਲਾਈਜ਼ ਕਰਨਾ ਸਿੱਖੋ 🦆 | [ਪਾਠ](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
|
|
| 10 | ਡੇਟਾ ਦੇ ਵੰਡ ਦੀ ਵਿਜ਼ੁਅਲਾਈਜ਼ੇਸ਼ਨ | [ਡੇਟਾ ਵਿਜ਼ੁਅਲਾਈਜ਼ੇਸ਼ਨ](3-Data-Visualization/README.md) | ਇੱਕ ਅੰਤਰਾਲ ਵਿੱਚ ਅਵਲੋਕਨ ਅਤੇ ਰੁਝਾਨਾਂ ਨੂੰ ਵਿਜ਼ੁਅਲਾਈਜ਼ ਕਰਨਾ। | [ਪਾਠ](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
|
|
| 11 | ਅਨੁਪਾਤਾਂ ਦੀ ਵਿਜ਼ੁਅਲਾਈਜ਼ੇਸ਼ਨ | [ਡੇਟਾ ਵਿਜ਼ੁਅਲਾਈਜ਼ੇਸ਼ਨ](3-Data-Visualization/README.md) | ਵਿਸ਼ੇਸ਼ ਅਤੇ ਸਮੂਹਬੱਧ ਪ੍ਰਤੀਸ਼ਤਾਂ ਨੂੰ ਵਿਜ਼ੁਅਲਾਈਜ਼ ਕਰਨਾ। | [ਪਾਠ](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
|
|
| 12 | ਸੰਬੰਧਾਂ ਦੀ ਵਿਜ਼ੁਅਲਾਈਜ਼ੇਸ਼ਨ | [ਡੇਟਾ ਵਿਜ਼ੁਅਲਾਈਜ਼ੇਸ਼ਨ](3-Data-Visualization/README.md) | ਡੇਟਾ ਦੇ ਸਮੂਹਾਂ ਅਤੇ ਇਸਦੇ ਚਰਾਂ ਦੇ ਵਿਚਕਾਰ ਸੰਬੰਧਾਂ ਅਤੇ ਸਹਿ-ਸੰਬੰਧਾਂ ਨੂੰ ਵਿਜ਼ੁਅਲਾਈਜ਼ ਕਰਨਾ। | [ਪਾਠ](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
|
|
| 13 | ਅਰਥਪੂਰਨ ਵਿਜ਼ੁਅਲਾਈਜ਼ੇਸ਼ਨ | [ਡੇਟਾ ਵਿਜ਼ੁਅਲਾਈਜ਼ੇਸ਼ਨ](3-Data-Visualization/README.md) | ਸਮੱਸਿਆ ਹੱਲ ਕਰਨ ਅਤੇ ਅੰਤਰਦ੍ਰਿਸ਼ਟੀ ਲਈ ਤੁਹਾਡੇ ਵਿਜ਼ੁਅਲਾਈਜ਼ੇਸ਼ਨ ਨੂੰ ਮੁੱਲਵਾਨ ਬਣਾਉਣ ਲਈ ਤਕਨੀਕਾਂ ਅਤੇ ਮਾਰਗਦਰਸ਼ਨ। | [ਪਾਠ](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
|
|
| 14 | ਡੇਟਾ ਸਾਇੰਸ ਲਾਈਫਸਾਈਕਲ ਦਾ ਪਰਿਚਯ | [ਲਾਈਫਸਾਈਕਲ](4-Data-Science-Lifecycle/README.md) | ਡੇਟਾ ਸਾਇੰਸ ਲਾਈਫਸਾਈਕਲ ਦਾ ਪਰਿਚਯ ਅਤੇ ਡੇਟਾ ਪ੍ਰਾਪਤ ਕਰਨ ਅਤੇ ਕੱਢਣ ਦਾ ਪਹਿਲਾ ਕਦਮ। | [ਪਾਠ](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
|
|
| 15 | ਵਿਸ਼ਲੇਸ਼ਣ | [ਲਾਈਫਸਾਈਕਲ](4-Data-Science-Lifecycle/README.md) | ਡੇਟਾ ਦਾ ਵਿਸ਼ਲੇਸ਼ਣ ਕਰਨ ਲਈ ਤਕਨੀਕਾਂ 'ਤੇ ਧਿਆਨ। | [ਪਾਠ](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
|
|
| 16 | ਸੰਚਾਰ | [ਲਾਈਫਸਾਈਕਲ](4-Data-Science-Lifecycle/README.md) | ਡੇਟਾ ਤੋਂ ਪ੍ਰਾਪਤ ਅੰਤਰਦ੍ਰਿਸ਼ਟੀ ਨੂੰ ਇਸ ਤਰੀਕੇ ਨਾਲ ਪੇਸ਼ ਕਰਨ 'ਤੇ ਧਿਆਨ ਜੋ ਫੈਸਲੇ ਕਰਨ ਵਾਲਿਆਂ ਲਈ ਸਮਝਣਾ ਆਸਾਨ ਬਣਾਏ। | [ਪਾਠ](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
|
|
| 17 | ਕਲਾਉਡ ਵਿੱਚ ਡੇਟਾ ਸਾਇੰਸ | [ਕਲਾਉਡ ਡੇਟਾ](5-Data-Science-In-Cloud/README.md) | ਕਲਾਉਡ ਵਿੱਚ ਡੇਟਾ ਸਾਇੰਸ ਅਤੇ ਇਸਦੇ ਫਾਇਦਿਆਂ ਦਾ ਪਰਿਚਯ। | [ਪਾਠ](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) ਅਤੇ [Maud](https://twitter.com/maudstweets) |
|
|
| 18 | ਕਲਾਉਡ ਵਿੱਚ ਡੇਟਾ ਸਾਇੰਸ | [ਕਲਾਉਡ ਡੇਟਾ](5-Data-Science-In-Cloud/README.md) | ਘੱਟ ਕੋਡ ਟੂਲਜ਼ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਮਾਡਲਾਂ ਨੂੰ ਟ੍ਰੇਨ ਕਰਨਾ। |[ਪਾਠ](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) ਅਤੇ [Maud](https://twitter.com/maudstweets) |
|
|
| 19 | ਕਲਾਉਡ ਵਿੱਚ ਡੇਟਾ ਸਾਇੰਸ | [ਕਲਾਉਡ ਡੇਟਾ](5-Data-Science-In-Cloud/README.md) | Azure Machine Learning Studio ਨਾਲ ਮਾਡਲਾਂ ਨੂੰ ਡਿਪਲੌਇ ਕਰਨਾ। | [ਪਾਠ](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) ਅਤੇ [Maud](https://twitter.com/maudstweets) |
|
|
| 20 | ਜੰਗਲੀ ਹਾਲਾਤ ਵਿੱਚ ਡੇਟਾ ਸਾਇੰਸ | [ਜੰਗਲੀ ਹਾਲਾਤ](6-Data-Science-In-Wild/README.md) | ਅਸਲ ਦੁਨੀਆ ਵਿੱਚ ਡੇਟਾ ਸਾਇੰਸ ਚਲਿਤ ਪ੍ਰੋਜੈਕਟ। | [ਪਾਠ](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
|
|
|
|
## GitHub Codespaces
|
|
|
|
ਇਸ ਨਮੂਨੇ ਨੂੰ Codespace ਵਿੱਚ ਖੋਲ੍ਹਣ ਲਈ ਹੇਠਾਂ ਦਿੱਤੇ ਕਦਮਾਂ ਦੀ ਪਾਲਣਾ ਕਰੋ:
|
|
1. Code ਡ੍ਰੌਪ-ਡਾਊਨ ਮੀਨੂ 'ਤੇ ਕਲਿੱਕ ਕਰੋ ਅਤੇ Open with Codespaces ਵਿਕਲਪ ਚੁਣੋ।
|
|
2. ਪੈਨ ਦੇ ਹੇਠਾਂ + New codespace ਚੁਣੋ।
|
|
ਹੋਰ ਜਾਣਕਾਰੀ ਲਈ, [GitHub ਦਸਤਾਵੇਜ਼](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace) ਦੇਖੋ।
|
|
|
|
## VSCode ਰਿਮੋਟ - ਕੰਟੇਨਰ
|
|
ਆਪਣੀ ਸਥਾਨਕ ਮਸ਼ੀਨ ਅਤੇ VSCode ਦੀ ਵਰਤੋਂ ਕਰਕੇ VS Code Remote - Containers ਐਕਸਟੈਂਸ਼ਨ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਇਸ ਰਿਪੋ ਨੂੰ ਕੰਟੇਨਰ ਵਿੱਚ ਖੋਲ੍ਹਣ ਲਈ ਹੇਠਾਂ ਦਿੱਤੇ ਕਦਮਾਂ ਦੀ ਪਾਲਣਾ ਕਰੋ:
|
|
|
|
1. ਜੇ ਇਹ ਪਹਿਲੀ ਵਾਰ ਹੈ ਕਿ ਤੁਸੀਂ ਡਿਵੈਲਪਮੈਂਟ ਕੰਟੇਨਰ ਦੀ ਵਰਤੋਂ ਕਰ ਰਹੇ ਹੋ, ਤਾਂ ਕਿਰਪਾ ਕਰਕੇ ਯਕੀਨੀ ਬਣਾਓ ਕਿ ਤੁਹਾਡਾ ਸਿਸਟਮ ਪ੍ਰੀ-ਰਿਕਵਾਇਰਮੈਂਟਾਂ ਨੂੰ ਪੂਰਾ ਕਰਦਾ ਹੈ (ਜਿਵੇਂ ਕਿ Docker ਇੰਸਟਾਲ ਕੀਤਾ ਹੋਵੇ) [ਸ਼ੁਰੂਆਤੀ ਦਸਤਾਵੇਜ਼](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started) ਵਿੱਚ।
|
|
|
|
ਇਸ ਰਿਪੋਜ਼ਟਰੀ ਦੀ ਵਰਤੋਂ ਕਰਨ ਲਈ, ਤੁਸੀਂ ਰਿਪੋਜ਼ਟਰੀ ਨੂੰ ਇੱਕ ਅਲੱਗ Docker ਵਾਲੀਅਮ ਵਿੱਚ ਖੋਲ੍ਹ ਸਕਦੇ ਹੋ:
|
|
|
|
**ਨੋਟ**: ਇਸਦੇ ਪਿੱਛੇ, ਇਹ Remote-Containers: **Clone Repository in Container Volume...** ਕਮਾਂਡ ਦੀ ਵਰਤੋਂ ਕਰੇਗਾ ਜੋ ਸਥਾਨਕ ਫਾਈਲ ਸਿਸਟਮ ਦੀ ਬਜਾਏ Docker ਵਾਲੀਅਮ ਵਿੱਚ ਸਰੋਤ ਕੋਡ ਨੂੰ ਕਲੋਨ ਕਰੇਗਾ। [ਵਾਲੀਅਮ](https://docs.docker.com/storage/volumes/) ਡੇਟਾ ਨੂੰ ਕੰਟੇਨਰ ਵਿੱਚ ਸਥਾਈ ਬਣਾਉਣ ਲਈ ਪਸੰਦੀਦਾ ਮਕੈਨਿਜ਼ਮ ਹਨ।
|
|
|
|
ਜਾਂ ਸਥਾਨਕ ਤੌਰ 'ਤੇ ਕਲੋਨ ਕੀਤੇ ਜਾਂ ਡਾਊਨਲੋਡ ਕੀਤੇ ਗਏ ਰਿਪੋਜ਼ਟਰੀ ਨੂੰ ਖੋਲ੍ਹੋ:
|
|
|
|
- ਇਸ ਰਿਪੋਜ਼ਟਰੀ ਨੂੰ ਆਪਣੇ ਸਥਾਨਕ ਫਾਈਲ ਸਿਸਟਮ 'ਤੇ ਕਲੋਨ ਕਰੋ।
|
|
- F1 ਦਬਾਓ ਅਤੇ **Remote-Containers: Open Folder in Container...** ਕਮਾਂਡ ਚੁਣੋ।
|
|
- ਇਸ ਫੋਲਡਰ ਦੀ ਕਲੋਨ ਕੀਤੀ ਕਾਪੀ ਚੁਣੋ, ਕੰਟੇਨਰ ਨੂੰ ਸ਼ੁਰੂ ਕਰਨ ਦੀ ਉਡੀਕ ਕਰੋ, ਅਤੇ ਚੀਜ਼ਾਂ ਨੂੰ ਅਜ਼ਮਾਓ।
|
|
|
|
## ਆਫਲਾਈਨ ਪਹੁੰਚ
|
|
|
|
ਤੁਸੀਂ [Docsify](https://docsify.js.org/#/) ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਇਸ ਦਸਤਾਵੇਜ਼ ਨੂੰ ਆਫਲਾਈਨ ਚਲਾ ਸਕਦੇ ਹੋ। ਇਸ ਰਿਪੋ ਨੂੰ ਫੋਰਕ ਕਰੋ, [Docsify ਇੰਸਟਾਲ ਕਰੋ](https://docsify.js.org/#/quickstart) ਆਪਣੇ ਸਥਾਨਕ ਮਸ਼ੀਨ 'ਤੇ, ਫਿਰ ਇਸ ਰਿਪੋ ਦੇ ਰੂਟ ਫੋਲਡਰ ਵਿੱਚ, `docsify serve` ਟਾਈਪ ਕਰੋ। ਵੈਬਸਾਈਟ ਤੁਹਾਡੇ localhost `localhost:3000` 'ਤੇ ਪੋਰਟ 3000 'ਤੇ ਸਰਵ ਕੀਤੀ ਜਾਵੇਗੀ।
|
|
|
|
> ਨੋਟ, ਨੋਟਬੁੱਕ Docsify ਰਾਹੀਂ ਰੈਂਡਰ ਨਹੀਂ ਕੀਤੇ ਜਾਣਗੇ, ਇਸ ਲਈ ਜਦੋਂ ਤੁਹਾਨੂੰ ਨੋਟਬੁੱਕ ਚਲਾਉਣ ਦੀ ਲੋੜ ਹੋਵੇ, ਤਾਂ ਇਸਨੂੰ Python kernel ਚਲਾਉਣ ਵਾਲੇ VS Code ਵਿੱਚ ਅਲੱਗ ਕਰਕੇ ਚਲਾਓ।
|
|
|
|
## ਹੋਰ ਪਾਠਕ੍ਰਮ
|
|
|
|
ਸਾਡੀ ਟੀਮ ਹੋਰ ਪਾਠਕ੍ਰਮ ਤਿਆਰ ਕਰਦੀ ਹੈ! ਦੇਖੋ:
|
|
|
|
- [Generative AI for Beginners](https://aka.ms/genai-beginners)
|
|
- [Generative AI for Beginners .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
|
|
- [Generative AI with JavaScript](https://github.com/microsoft/generative-ai-with-javascript)
|
|
- [Generative AI with Java](https://aka.ms/genaijava)
|
|
- [AI for Beginners](https://aka.ms/ai-beginners)
|
|
- [Data Science for Beginners](https://aka.ms/datascience-beginners)
|
|
- [Bash for Beginners](https://github.com/microsoft/bash-for-beginners)
|
|
- [ML for Beginners](https://aka.ms/ml-beginners)
|
|
- [Cybersecurity for Beginners](https://github.com/microsoft/Security-101)
|
|
- [Web Dev for Beginners](https://aka.ms/webdev-beginners)
|
|
- [IoT for Beginners](https://aka.ms/iot-beginners)
|
|
- [Machine Learning for Beginners](https://aka.ms/ml-beginners)
|
|
- [XR Development for Beginners](https://aka.ms/xr-dev-for-beginners)
|
|
- [Mastering GitHub Copilot for AI Paired Programming](
|
|
|
|
---
|
|
|
|
**ਅਸਵੀਕਰਤੀ**:
|
|
ਇਹ ਦਸਤਾਵੇਜ਼ AI ਅਨੁਵਾਦ ਸੇਵਾ [Co-op Translator](https://github.com/Azure/co-op-translator) ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਅਨੁਵਾਦ ਕੀਤਾ ਗਿਆ ਹੈ। ਹਾਲਾਂਕਿ ਅਸੀਂ ਸਹੀ ਹੋਣ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰਦੇ ਹਾਂ, ਕਿਰਪਾ ਕਰਕੇ ਧਿਆਨ ਦਿਓ ਕਿ ਸਵੈਚਾਲਿਤ ਅਨੁਵਾਦਾਂ ਵਿੱਚ ਗਲਤੀਆਂ ਜਾਂ ਅਸੁਚੱਜੇਪਣ ਹੋ ਸਕਦੇ ਹਨ। ਮੂਲ ਦਸਤਾਵੇਜ਼, ਜੋ ਇਸਦੀ ਮੂਲ ਭਾਸ਼ਾ ਵਿੱਚ ਹੈ, ਨੂੰ ਅਧਿਕਾਰਤ ਸਰੋਤ ਮੰਨਿਆ ਜਾਣਾ ਚਾਹੀਦਾ ਹੈ। ਮਹੱਤਵਪੂਰਨ ਜਾਣਕਾਰੀ ਲਈ, ਪੇਸ਼ੇਵਰ ਮਨੁੱਖੀ ਅਨੁਵਾਦ ਦੀ ਸਿਫਾਰਸ਼ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਇਸ ਅਨੁਵਾਦ ਦੀ ਵਰਤੋਂ ਤੋਂ ਪੈਦਾ ਹੋਣ ਵਾਲੇ ਕਿਸੇ ਵੀ ਗਲਤਫਹਿਮੀ ਜਾਂ ਗਲਤ ਵਿਆਖਿਆ ਲਈ ਅਸੀਂ ਜ਼ਿੰਮੇਵਾਰ ਨਹੀਂ ਹਾਂ। |