You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Data-Science-For-Beginners/translations/ur/README.md

157 lines
24 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "7332da4946897c5885e9ca5bc24de96b",
"translation_date": "2025-09-06T10:38:14+00:00",
"source_file": "README.md",
"language_code": "ur"
}
-->
# ڈیٹا سائنس برائے ابتدائی - ایک نصاب
Azure Cloud Advocates مائیکروسافٹ میں خوشی کے ساتھ ایک 10 ہفتوں، 20 اسباق پر مشتمل نصاب پیش کرتے ہیں جو مکمل طور پر ڈیٹا سائنس کے بارے میں ہے۔ ہر سبق میں پیشگی اور بعد از سبق کوئز، سبق مکمل کرنے کے لیے تحریری ہدایات، ایک حل، اور ایک اسائنمنٹ شامل ہے۔ ہمارا پروجیکٹ پر مبنی طریقہ کار آپ کو سیکھنے کے دوران بنانے کی اجازت دیتا ہے، جو نئے مہارتوں کو یاد رکھنے کا ایک مؤثر طریقہ ہے۔
**ہمارے مصنفین کا دل سے شکریہ:** [جیسمن گریناوے](https://www.twitter.com/paladique)، [دیمتری سوشنیکوف](http://soshnikov.com)، [نیتیا نرسمہن](https://twitter.com/nitya)، [جیلن میکگی](https://twitter.com/JalenMcG)، [جین لوپر](https://twitter.com/jenlooper)، [مود لیوی](https://twitter.com/maudstweets)، [ٹفنی سوٹیر](https://twitter.com/TiffanySouterre)، [کرسٹوفر ہیریسن](https://www.twitter.com/geektrainer)۔
**🙏 خصوصی شکریہ 🙏 ہمارے [مائیکروسافٹ اسٹوڈنٹ ایمبیسڈر](https://studentambassadors.microsoft.com/) مصنفین، جائزہ لینے والوں اور مواد کے تعاون کرنے والوں کا،** خاص طور پر آریان اروڑا، [ادیتیہ گرگ](https://github.com/AdityaGarg00)، [الوندرا سانچیز](https://www.linkedin.com/in/alondra-sanchez-molina/)، [انکیتا سنگھ](https://www.linkedin.com/in/ankitasingh007)، [انوپم مشرا](https://www.linkedin.com/in/anupam--mishra/)، [ارپیتا داس](https://www.linkedin.com/in/arpitadas01/)، چھائل بہاری دوبے، [دیبری نسوفور](https://www.linkedin.com/in/dibrinsofor)، [دیشیتا بھاسین](https://www.linkedin.com/in/dishita-bhasin-7065281bb)، [مجید صافی](https://www.linkedin.com/in/majd-s/)، [میکس بلوم](https://www.linkedin.com/in/max-blum-6036a1186/)، [میگوئل کوریا](https://www.linkedin.com/in/miguelmque/)، [محمد افتخار (افتو) ابن جلال](https://twitter.com/iftu119)، [نورین تبسم](https://www.linkedin.com/in/nawrin-tabassum)، [ریمنڈ وانگسا پترا](https://www.linkedin.com/in/raymond-wp/)، [روہت یادو](https://www.linkedin.com/in/rty2423)، سمردھی شرما، [سانیا سنہا](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200)، [شینا نرولا](https://www.linkedin.com/in/sheena-narua-n/)، [توقیر احمد](https://www.linkedin.com/in/tauqeerahmad5201/)، یوگندر سنگھ پاوار، [ودوشی گپتا](https://www.linkedin.com/in/vidushi-gupta07/)، [جسلین سوندھی](https://www.linkedin.com/in/jasleen-sondhi/)۔
|![اسکیچ نوٹ از @sketchthedocs https://sketchthedocs.dev](../../translated_images/00-Title.8af36cd35da1ac555b678627fbdc6e320c75f0100876ea41d30ea205d3b08d22.ur.png)|
|:---:|
| ڈیٹا سائنس برائے ابتدائی - _اسکیچ نوٹ از [@nitya](https://twitter.com/nitya)_ |
### 🌐 کثیر زبان کی حمایت
#### GitHub ایکشن کے ذریعے (خودکار اور ہمیشہ تازہ ترین)
[فرانسیسی](../fr/README.md) | [ہسپانوی](../es/README.md) | [جرمن](../de/README.md) | [روسی](../ru/README.md) | [عربی](../ar/README.md) | [فارسی](../fa/README.md) | [اردو](./README.md) | [چینی (سادہ)](../zh/README.md) | [چینی (روایتی، مکاؤ)](../mo/README.md) | [چینی (روایتی، ہانگ کانگ)](../hk/README.md) | [چینی (روایتی، تائیوان)](../tw/README.md) | [جاپانی](../ja/README.md) | [کوریائی](../ko/README.md) | [ہندی](../hi/README.md) | [بنگالی](../bn/README.md) | [مراٹھی](../mr/README.md) | [نیپالی](../ne/README.md) | [پنجابی (گرمکھی)](../pa/README.md) | [پرتگالی (پرتگال)](../pt/README.md) | [پرتگالی (برازیل)](../br/README.md) | [اطالوی](../it/README.md) | [پولش](../pl/README.md) | [ترکی](../tr/README.md) | [یونانی](../el/README.md) | [تھائی](../th/README.md) | [سویڈش](../sv/README.md) | [ڈینش](../da/README.md) | [نارویجین](../no/README.md) | [فنش](../fi/README.md) | [ڈچ](../nl/README.md) | [عبرانی](../he/README.md) | [ویتنامی](../vi/README.md) | [انڈونیشیائی](../id/README.md) | [ملائی](../ms/README.md) | [ٹیگالوگ (فلپائنی)](../tl/README.md) | [سواحلی](../sw/README.md) | [ہنگری](../hu/README.md) | [چیک](../cs/README.md) | [سلوواک](../sk/README.md) | [رومانیائی](../ro/README.md) | [بلغاریائی](../bg/README.md) | [سربیائی (سیریلک)](../sr/README.md) | [کروشین](../hr/README.md) | [سلووینیائی](../sl/README.md) | [یوکرینیائی](../uk/README.md) | [برمی (میانمار)](../my/README.md)
**اگر آپ اضافی زبانوں کی حمایت چاہتے ہیں تو دستیاب زبانوں کی فہرست [یہاں](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md) موجود ہے۔**
#### ہماری کمیونٹی میں شامل ہوں
[![Azure AI Discord](https://dcbadge.limes.pink/api/server/kzRShWzttr)](https://discord.gg/kzRShWzttr)
# کیا آپ طالب علم ہیں؟
مندرجہ ذیل وسائل کے ساتھ شروع کریں:
- [اسٹوڈنٹ ہب صفحہ](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) اس صفحے پر آپ کو ابتدائی وسائل، اسٹوڈنٹ پیک اور یہاں تک کہ مفت سرٹیفکیٹ واؤچر حاصل کرنے کے طریقے ملیں گے۔ یہ ایک صفحہ ہے جسے آپ بک مارک کرنا چاہیں گے اور وقتاً فوقتاً چیک کریں گے کیونکہ ہم کم از کم ماہانہ مواد تبدیل کرتے ہیں۔
- [مائیکروسافٹ لرن اسٹوڈنٹ ایمبیسڈرز](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) ایک عالمی کمیونٹی میں شامل ہوں، یہ مائیکروسافٹ میں آپ کے داخلے کا راستہ ہو سکتا ہے۔
# شروعات کریں
> **اساتذہ**: ہم نے [کچھ تجاویز شامل کی ہیں](for-teachers.md) کہ اس نصاب کو کیسے استعمال کیا جائے۔ ہمیں آپ کی رائے [ہمارے بحث فورم](https://github.com/microsoft/Data-Science-For-Beginners/discussions) میں پسند آئے گی!
> **[طلباء](https://aka.ms/student-page)**: اس نصاب کو خود استعمال کرنے کے لیے، پورے ریپو کو فورک کریں اور خود سے مشقیں مکمل کریں، ایک پیشگی لیکچر کوئز سے شروع کریں۔ پھر لیکچر پڑھیں اور باقی سرگرمیاں مکمل کریں۔ کوشش کریں کہ اسباق کو سمجھ کر پروجیکٹس بنائیں بجائے اس کے کہ حل کوڈ کو کاپی کریں؛ تاہم، وہ کوڈ /solutions فولڈرز میں ہر پروجیکٹ پر مبنی سبق میں دستیاب ہے۔ ایک اور خیال یہ ہو سکتا ہے کہ دوستوں کے ساتھ ایک اسٹڈی گروپ بنائیں اور مواد کو ایک ساتھ دیکھیں۔ مزید مطالعہ کے لیے، ہم [مائیکروسافٹ لرن](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) کی سفارش کرتے ہیں۔
## ٹیم سے ملاقات کریں
[![پرومو ویڈیو](../../ds-for-beginners.gif)](https://youtu.be/8mzavjQSMM4 "پرومو ویڈیو")
**Gif از** [محیط جیسل](https://www.linkedin.com/in/mohitjaisal)
> 🎥 اوپر دی گئی تصویر پر کلک کریں تاکہ پروجیکٹ اور اسے بنانے والے افراد کے بارے میں ویڈیو دیکھ سکیں!
## تدریسی طریقہ کار
ہم نے اس نصاب کو بناتے وقت دو تدریسی اصولوں کا انتخاب کیا ہے: یہ یقینی بنانا کہ یہ پروجیکٹ پر مبنی ہے اور اس میں بار بار کوئز شامل ہیں۔ اس سیریز کے اختتام تک، طلباء ڈیٹا سائنس کے بنیادی اصول سیکھ چکے ہوں گے، جن میں اخلاقی تصورات، ڈیٹا کی تیاری، ڈیٹا کے ساتھ کام کرنے کے مختلف طریقے، ڈیٹا کی بصری نمائندگی، ڈیٹا کا تجزیہ، ڈیٹا سائنس کے حقیقی دنیا کے استعمال کے کیسز، اور مزید شامل ہیں۔
اس کے علاوہ، کلاس سے پہلے ایک کم دباؤ والا کوئز طالب علم کو کسی موضوع کو سیکھنے کی طرف متوجہ کرتا ہے، جبکہ کلاس کے بعد دوسرا کوئز مزید یادداشت کو یقینی بناتا ہے۔ یہ نصاب لچکدار اور دلچسپ بنایا گیا ہے اور اسے مکمل یا جزوی طور پر لیا جا سکتا ہے۔ پروجیکٹس چھوٹے شروع ہوتے ہیں اور 10 ہفتوں کے سائیکل کے اختتام تک بتدریج پیچیدہ ہو جاتے ہیں۔
ہمارے [Code of Conduct](CODE_OF_CONDUCT.md)، [Contributing](CONTRIBUTING.md)، [Translation](TRANSLATIONS.md) رہنما اصول دیکھیں۔ ہم آپ کی تعمیری رائے کا خیرمقدم کرتے ہیں!
## ہر سبق میں شامل ہیں:
- اختیاری خاکہ نوٹ
- اختیاری اضافی ویڈیو
- سبق سے پہلے وارم اپ کوئز
- تحریری سبق
- پروجیکٹ پر مبنی اسباق کے لیے، پروجیکٹ بنانے کے مرحلہ وار رہنما
- علم کی جانچ
- ایک چیلنج
- اضافی مطالعہ
- اسائنمنٹ
- [سبق کے بعد کوئز](https://ff-quizzes.netlify.app/en/)
> **کوئز کے بارے میں ایک نوٹ**: تمام کوئز Quiz-App فولڈر میں موجود ہیں، کل 40 کوئز، ہر ایک میں تین سوالات۔ یہ اسباق کے اندر سے لنک کیے گئے ہیں، لیکن کوئز ایپ کو مقامی طور پر چلایا جا سکتا ہے یا Azure پر تعینات کیا جا سکتا ہے؛ `quiz-app` فولڈر میں دی گئی ہدایات پر عمل کریں۔ یہ آہستہ آہستہ مقامی زبانوں میں منتقل کیے جا رہے ہیں۔
## اسباق
|![@sketchthedocs کی خاکہ نوٹ https://sketchthedocs.dev](../../translated_images/00-Roadmap.4905d6567dff47532b9bfb8e0b8980fc6b0b1292eebb24181c1a9753b33bc0f5.ur.png)|
|:---:|
| ڈیٹا سائنس برائے ابتدائی: روڈ میپ - _[@nitya](https://twitter.com/nitya) کی خاکہ نوٹ_ |
| سبق نمبر | موضوع | سبق کی گروپ بندی | سیکھنے کے مقاصد | لنک شدہ سبق | مصنف |
| :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
| 01 | ڈیٹا سائنس کی تعریف | [تعارف](1-Introduction/README.md) | ڈیٹا سائنس کے بنیادی تصورات سیکھیں اور یہ مصنوعی ذہانت، مشین لرننگ، اور بڑے ڈیٹا سے کیسے متعلق ہے۔ | [سبق](1-Introduction/01-defining-data-science/README.md) [ویڈیو](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 02 | ڈیٹا سائنس کی اخلاقیات | [تعارف](1-Introduction/README.md) | ڈیٹا اخلاقیات کے تصورات، چیلنجز اور فریم ورک۔ | [سبق](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 03 | ڈیٹا کی تعریف | [تعارف](1-Introduction/README.md) | ڈیٹا کو کیسے درجہ بندی کیا جاتا ہے اور اس کے عام ذرائع۔ | [سبق](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | شماریات اور احتمال کا تعارف | [تعارف](1-Introduction/README.md) | ڈیٹا کو سمجھنے کے لیے احتمال اور شماریات کی ریاضیاتی تکنیکیں۔ | [سبق](1-Introduction/04-stats-and-probability/README.md) [ویڈیو](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | تعلقاتی ڈیٹا کے ساتھ کام کرنا | [ڈیٹا کے ساتھ کام کرنا](2-Working-With-Data/README.md) | تعلقاتی ڈیٹا کا تعارف اور Structured Query Language (SQL) کے ذریعے تعلقاتی ڈیٹا کو دریافت اور تجزیہ کرنے کی بنیادی باتیں۔ | [سبق](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | NoSQL ڈیٹا کے ساتھ کام کرنا | [ڈیٹا کے ساتھ کام کرنا](2-Working-With-Data/README.md) | غیر تعلقاتی ڈیٹا کا تعارف، اس کی مختلف اقسام اور دستاویز ڈیٹا بیس کو دریافت اور تجزیہ کرنے کی بنیادی باتیں۔ | [سبق](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | Python کے ساتھ کام کرنا | [ڈیٹا کے ساتھ کام کرنا](2-Working-With-Data/README.md) | Python کے ذریعے ڈیٹا کی دریافت کے لیے بنیادی باتیں، جیسے Pandas لائبریری۔ Python پروگرامنگ کی بنیادی سمجھ بوجھ کی سفارش کی جاتی ہے۔ | [سبق](2-Working-With-Data/07-python/README.md) [ویڈیو](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | ڈیٹا کی تیاری | [ڈیٹا کے ساتھ کام کرنا](2-Working-With-Data/README.md) | ڈیٹا کو صاف کرنے اور تبدیل کرنے کے لیے تکنیکوں پر موضوعات تاکہ گمشدہ، غلط، یا نامکمل ڈیٹا کے چیلنجز کو حل کیا جا سکے۔ | [سبق](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 09 | مقداروں کی بصری نمائندگی | [ڈیٹا کی بصری نمائندگی](3-Data-Visualization/README.md) | Matplotlib کا استعمال کرتے ہوئے پرندوں کے ڈیٹا کو بصری طور پر پیش کرنا سیکھیں 🦆 | [سبق](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 10 | ڈیٹا کی تقسیم کی بصری نمائندگی | [ڈیٹا کی بصری نمائندگی](3-Data-Visualization/README.md) | وقفے کے اندر مشاہدات اور رجحانات کو بصری طور پر پیش کرنا۔ | [سبق](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 11 | تناسب کی بصری نمائندگی | [ڈیٹا کی بصری نمائندگی](3-Data-Visualization/README.md) | الگ اور گروپ شدہ فیصد کو بصری طور پر پیش کرنا۔ | [سبق](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | تعلقات کی بصری نمائندگی | [ڈیٹا کی بصری نمائندگی](3-Data-Visualization/README.md) | ڈیٹا کے سیٹ اور ان کے متغیرات کے درمیان تعلقات اور ارتباط کو بصری طور پر پیش کرنا۔ | [سبق](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | بامعنی بصری نمائندگی | [ڈیٹا کی بصری نمائندگی](3-Data-Visualization/README.md) | مسئلے کو مؤثر طریقے سے حل کرنے اور بصیرت کے لیے اپنی بصری نمائندگی کو قیمتی بنانے کے لیے تکنیک اور رہنمائی۔ | [سبق](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 14 | ڈیٹا سائنس کے لائف سائیکل کا تعارف | [لائف سائیکل](4-Data-Science-Lifecycle/README.md) | ڈیٹا سائنس کے لائف سائیکل کا تعارف اور ڈیٹا حاصل کرنے اور نکالنے کا پہلا مرحلہ۔ | [سبق](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 15 | تجزیہ کرنا | [لائف سائیکل](4-Data-Science-Lifecycle/README.md) | ڈیٹا سائنس کے لائف سائیکل کا یہ مرحلہ ڈیٹا کا تجزیہ کرنے کی تکنیکوں پر مرکوز ہے۔ | [سبق](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | مواصلات | [لائف سائیکل](4-Data-Science-Lifecycle/README.md) | ڈیٹا سائنس کے لائف سائیکل کا یہ مرحلہ ڈیٹا سے حاصل کردہ بصیرت کو اس طرح پیش کرنے پر مرکوز ہے کہ فیصلہ سازوں کے لیے اسے سمجھنا آسان ہو۔ | [سبق](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 17 | کلاؤڈ میں ڈیٹا سائنس | [کلاؤڈ ڈیٹا](5-Data-Science-In-Cloud/README.md) | اسباق کی یہ سیریز کلاؤڈ میں ڈیٹا سائنس اور اس کے فوائد کا تعارف کراتی ہے۔ | [سبق](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) اور [Maud](https://twitter.com/maudstweets) |
| 18 | کلاؤڈ میں ڈیٹا سائنس | [کلاؤڈ ڈیٹا](5-Data-Science-In-Cloud/README.md) | کم کوڈ ٹولز کا استعمال کرتے ہوئے ماڈلز کی تربیت۔ |[سبق](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) اور [Maud](https://twitter.com/maudstweets) |
| 19 | کلاؤڈ میں ڈیٹا سائنس | [کلاؤڈ ڈیٹا](5-Data-Science-In-Cloud/README.md) | Azure Machine Learning Studio کے ساتھ ماڈلز کو تعینات کرنا۔ | [سبق](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) اور [Maud](https://twitter.com/maudstweets) |
| 20 | حقیقی دنیا میں ڈیٹا سائنس | [حقیقی دنیا میں](6-Data-Science-In-Wild/README.md) | حقیقی دنیا میں ڈیٹا سائنس سے چلنے والے منصوبے۔ | [سبق](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
## GitHub Codespaces
اس نمونے کو Codespace میں کھولنے کے لیے درج ذیل مراحل پر عمل کریں:
1. Code ڈراپ ڈاؤن مینو پر کلک کریں اور Open with Codespaces آپشن منتخب کریں۔
2. پین کے نیچے + New codespace منتخب کریں۔
مزید معلومات کے لیے، [GitHub دستاویزات](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace) دیکھیں۔
## VSCode Remote - Containers
اپنے مقامی کمپیوٹر اور VSCode کا استعمال کرتے ہوئے اس ریپو کو کنٹینر میں کھولنے کے لیے درج ذیل مراحل پر عمل کریں، VS Code Remote - Containers ایکسٹینشن کا استعمال کرتے ہوئے:
1. اگر یہ آپ کا پہلی بار ڈیولپمنٹ کنٹینر استعمال کرنا ہے، تو براہ کرم یقینی بنائیں کہ آپ کا سسٹم پری ریکوائرمنٹس کو پورا کرتا ہے (یعنی Docker انسٹال ہو) [شروع کرنے کی دستاویزات](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started) میں۔
اس ریپوزٹری کو استعمال کرنے کے لیے، آپ یا تو ریپوزٹری کو ایک الگ تھلگ Docker والیوم میں کھول سکتے ہیں:
**نوٹ**: اندرونی طور پر، یہ Remote-Containers: **Clone Repository in Container Volume...** کمانڈ استعمال کرے گا تاکہ سورس کوڈ کو مقامی فائل سسٹم کے بجائے Docker والیوم میں کلون کیا جا سکے۔ [Volumes](https://docs.docker.com/storage/volumes/) کنٹینر ڈیٹا کو برقرار رکھنے کے لیے ترجیحی طریقہ کار ہیں۔
یا مقامی طور پر کلون شدہ یا ڈاؤن لوڈ شدہ ریپوزٹری کا ورژن کھولیں:
- اس ریپوزٹری کو اپنے مقامی فائل سسٹم پر کلون کریں۔
- F1 دبائیں اور **Remote-Containers: Open Folder in Container...** کمانڈ منتخب کریں۔
- اس فولڈر کی کلون شدہ کاپی منتخب کریں، کنٹینر کے شروع ہونے کا انتظار کریں، اور چیزوں کو آزمانا شروع کریں۔
## آف لائن رسائی
آپ اس دستاویزات کو آف لائن چلا سکتے ہیں [Docsify](https://docsify.js.org/#/) کا استعمال کرتے ہوئے۔ اس ریپو کو فورک کریں، [Docsify انسٹال کریں](https://docsify.js.org/#/quickstart) اپنے مقامی کمپیوٹر پر، پھر اس ریپو کے روٹ فولڈر میں `docsify serve` ٹائپ کریں۔ ویب سائٹ آپ کے localhost پر پورٹ 3000 پر پیش کی جائے گی: `localhost:3000`۔
> نوٹ، نوٹ بکس Docsify کے ذریعے پیش نہیں کیے جائیں گے، لہذا جب آپ کو نوٹ بک چلانے کی ضرورت ہو، تو اسے Python کرنل چلانے والے VS Code میں الگ سے کریں۔
## دیگر نصاب
ہماری ٹیم دیگر نصاب بھی تیار کرتی ہے! دیکھیں:
- [Generative AI for Beginners](https://aka.ms/genai-beginners)
- [Generative AI for Beginners .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [Generative AI with JavaScript](https://github.com/microsoft/generative-ai-with-javascript)
- [Generative AI with Java](https://aka.ms/genaijava)
- [AI for Beginners](https://aka.ms/ai-beginners)
- [Data Science for Beginners](https://aka.ms/datascience-beginners)
- [Bash for Beginners](https://github.com/microsoft/bash-for-beginners)
- [ML for Beginners](https://aka.ms/ml-beginners)
- [Cybersecurity for Beginners](https://github.com/microsoft/Security-101)
- [Web Dev for Beginners](https://aka.ms/webdev-beginners)
- [IoT for Beginners](https://aka.ms/iot-beginners)
- [Machine Learning for Beginners](https://aka.ms/ml-beginners)
- [XR Development for Beginners](https://aka.ms/xr-dev-for-beginners)
- [Mastering GitHub Copilot for AI Paired Programming](https://aka.ms/GitHubCopilotAI)
- [XR Development for Beginners](https://github.com/microsoft/xr-development-for-beginners)
- [Mastering GitHub Copilot for C#/.NET Developers](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers)
- [Choose Your Own Copilot Adventure](https://github.com/microsoft/CopilotAdventures)
---
**ڈسکلیمر**:
یہ دستاویز AI ترجمہ سروس [Co-op Translator](https://github.com/Azure/co-op-translator) کا استعمال کرتے ہوئے ترجمہ کی گئی ہے۔ ہم درستگی کے لیے کوشش کرتے ہیں، لیکن براہ کرم آگاہ رہیں کہ خودکار ترجمے میں غلطیاں یا عدم درستگی ہو سکتی ہیں۔ اصل دستاویز، جو اس کی اصل زبان میں ہے، کو مستند ذریعہ سمجھا جانا چاہیے۔ اہم معلومات کے لیے، پیشہ ور انسانی ترجمہ کی سفارش کی جاتی ہے۔ اس ترجمے کے استعمال سے پیدا ہونے والی کسی بھی غلط فہمی یا غلط تشریح کے لیے ہم ذمہ دار نہیں ہیں۔