You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
260 lines
7.3 KiB
260 lines
7.3 KiB
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"## Utangulizi wa Uwezekano na Takwimu \n",
|
|
"## Kazi \n",
|
|
"\n",
|
|
"Katika kazi hii, tutatumia seti ya data ya wagonjwa wa kisukari iliyochukuliwa [kutoka hapa](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html). \n"
|
|
],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 13,
|
|
"source": [
|
|
"import pandas as pd\n",
|
|
"import numpy as np\n",
|
|
"\n",
|
|
"df = pd.read_csv(\"../../data/diabetes.tsv\",sep='\\t')\n",
|
|
"df.head()"
|
|
],
|
|
"outputs": [
|
|
{
|
|
"output_type": "execute_result",
|
|
"data": {
|
|
"text/plain": [
|
|
" AGE SEX BMI BP S1 S2 S3 S4 S5 S6 Y\n",
|
|
"0 59 2 32.1 101.0 157 93.2 38.0 4.0 4.8598 87 151\n",
|
|
"1 48 1 21.6 87.0 183 103.2 70.0 3.0 3.8918 69 75\n",
|
|
"2 72 2 30.5 93.0 156 93.6 41.0 4.0 4.6728 85 141\n",
|
|
"3 24 1 25.3 84.0 198 131.4 40.0 5.0 4.8903 89 206\n",
|
|
"4 50 1 23.0 101.0 192 125.4 52.0 4.0 4.2905 80 135"
|
|
],
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr style=\"text-align: right;\">\n",
|
|
" <th></th>\n",
|
|
" <th>AGE</th>\n",
|
|
" <th>SEX</th>\n",
|
|
" <th>BMI</th>\n",
|
|
" <th>BP</th>\n",
|
|
" <th>S1</th>\n",
|
|
" <th>S2</th>\n",
|
|
" <th>S3</th>\n",
|
|
" <th>S4</th>\n",
|
|
" <th>S5</th>\n",
|
|
" <th>S6</th>\n",
|
|
" <th>Y</th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>0</th>\n",
|
|
" <td>59</td>\n",
|
|
" <td>2</td>\n",
|
|
" <td>32.1</td>\n",
|
|
" <td>101.0</td>\n",
|
|
" <td>157</td>\n",
|
|
" <td>93.2</td>\n",
|
|
" <td>38.0</td>\n",
|
|
" <td>4.0</td>\n",
|
|
" <td>4.8598</td>\n",
|
|
" <td>87</td>\n",
|
|
" <td>151</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>1</th>\n",
|
|
" <td>48</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>21.6</td>\n",
|
|
" <td>87.0</td>\n",
|
|
" <td>183</td>\n",
|
|
" <td>103.2</td>\n",
|
|
" <td>70.0</td>\n",
|
|
" <td>3.0</td>\n",
|
|
" <td>3.8918</td>\n",
|
|
" <td>69</td>\n",
|
|
" <td>75</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>2</th>\n",
|
|
" <td>72</td>\n",
|
|
" <td>2</td>\n",
|
|
" <td>30.5</td>\n",
|
|
" <td>93.0</td>\n",
|
|
" <td>156</td>\n",
|
|
" <td>93.6</td>\n",
|
|
" <td>41.0</td>\n",
|
|
" <td>4.0</td>\n",
|
|
" <td>4.6728</td>\n",
|
|
" <td>85</td>\n",
|
|
" <td>141</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>3</th>\n",
|
|
" <td>24</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>25.3</td>\n",
|
|
" <td>84.0</td>\n",
|
|
" <td>198</td>\n",
|
|
" <td>131.4</td>\n",
|
|
" <td>40.0</td>\n",
|
|
" <td>5.0</td>\n",
|
|
" <td>4.8903</td>\n",
|
|
" <td>89</td>\n",
|
|
" <td>206</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>4</th>\n",
|
|
" <td>50</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>23.0</td>\n",
|
|
" <td>101.0</td>\n",
|
|
" <td>192</td>\n",
|
|
" <td>125.4</td>\n",
|
|
" <td>52.0</td>\n",
|
|
" <td>4.0</td>\n",
|
|
" <td>4.2905</td>\n",
|
|
" <td>80</td>\n",
|
|
" <td>135</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"execution_count": 13
|
|
}
|
|
],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"Katika seti hii ya data, safu zifuatazo zinaelezwa kama ifuatavyo:\n",
|
|
"* Umri na jinsia vinaeleweka wazi\n",
|
|
"* BMI ni kipimo cha uzito wa mwili kulingana na urefu\n",
|
|
"* BP ni shinikizo la damu la wastani\n",
|
|
"* S1 hadi S6 ni vipimo tofauti vya damu\n",
|
|
"* Y ni kipimo cha ubora wa maendeleo ya ugonjwa kwa kipindi cha mwaka mmoja\n",
|
|
"\n",
|
|
"Tuchunguze seti hii ya data kwa kutumia mbinu za uwezekano na takwimu.\n",
|
|
"\n",
|
|
"### Kazi ya 1: Hesabu wastani wa thamani na tofauti kwa thamani zote\n"
|
|
],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"source": [],
|
|
"outputs": [],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"### Kazi ya 2: Chora visanduku vya BMI, BP na Y kulingana na jinsia\n"
|
|
],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"source": [],
|
|
"outputs": [],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"source": [],
|
|
"outputs": [],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"### Kazi ya 4: Jaribu uhusiano kati ya vigezo tofauti na maendeleo ya ugonjwa (Y)\n",
|
|
"\n",
|
|
"> **Kidokezo** Jedwali la uhusiano litakupa taarifa muhimu zaidi kuhusu ni thamani zipi zinategemeana.\n"
|
|
],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"\n---\n\n**Kanusho**: \nHati hii imetafsiriwa kwa kutumia huduma ya tafsiri ya AI [Co-op Translator](https://github.com/Azure/co-op-translator). Ingawa tunajitahidi kwa usahihi, tafadhali fahamu kuwa tafsiri za kiotomatiki zinaweza kuwa na makosa au kutokuwa sahihi. Hati ya asili katika lugha yake ya awali inapaswa kuzingatiwa kama chanzo cha mamlaka. Kwa taarifa muhimu, inashauriwa kutumia huduma ya tafsiri ya kitaalamu ya binadamu. Hatutawajibika kwa maelewano mabaya au tafsiri zisizo sahihi zinazotokana na matumizi ya tafsiri hii.\n"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"orig_nbformat": 4,
|
|
"language_info": {
|
|
"name": "python",
|
|
"version": "3.8.8",
|
|
"mimetype": "text/x-python",
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"pygments_lexer": "ipython3",
|
|
"nbconvert_exporter": "python",
|
|
"file_extension": ".py"
|
|
},
|
|
"kernelspec": {
|
|
"name": "python3",
|
|
"display_name": "Python 3.8.8 64-bit (conda)"
|
|
},
|
|
"interpreter": {
|
|
"hash": "86193a1ab0ba47eac1c69c1756090baa3b420b3eea7d4aafab8b85f8b312f0c5"
|
|
},
|
|
"coopTranslator": {
|
|
"original_hash": "6d945fd15163f60cb473dbfe04b2d100",
|
|
"translation_date": "2025-09-06T17:47:50+00:00",
|
|
"source_file": "1-Introduction/04-stats-and-probability/assignment.ipynb",
|
|
"language_code": "sw"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
} |