22 KiB
ਮਾਤਰਾ ਨੂੰ ਦ੍ਰਿਸ਼ਮਾਨ ਕਰਨਾ
![]() |
---|
ਮਾਤਰਾ ਨੂੰ ਦ੍ਰਿਸ਼ਮਾਨ ਕਰਨਾ - Sketchnote by @nitya |
ਇਸ ਪਾਠ ਵਿੱਚ ਤੁਸੀਂ ਪਾਈਥਨ ਦੀਆਂ ਕਈ ਉਪਲਬਧ ਲਾਇਬ੍ਰੇਰੀਆਂ ਵਿੱਚੋਂ ਇੱਕ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਸਿੱਖੋਗੇ ਕਿ ਮਾਤਰਾ ਦੇ ਸੰਕਲਪ ਦੇ ਆਧਾਰ 'ਤੇ ਦਿਲਚਸਪ ਦ੍ਰਿਸ਼ਮਾਨਤਾ ਕਿਵੇਂ ਬਣਾਈ ਜਾ ਸਕਦੀ ਹੈ। ਮਿਨੇਸੋਟਾ ਦੇ ਪੰਛੀਆਂ ਬਾਰੇ ਇੱਕ ਸਾਫ ਕੀਤੇ ਡਾਟਾਸੈਟ ਦੀ ਵਰਤੋਂ ਕਰਕੇ, ਤੁਸੀਂ ਸਥਾਨਕ ਜੰਗਲੀ ਜੀਵਾਂ ਬਾਰੇ ਕਈ ਦਿਲਚਸਪ ਤੱਥ ਸਿੱਖ ਸਕਦੇ ਹੋ।
ਪ੍ਰੀ-ਪਾਠ ਕਵਿਜ਼
Matplotlib ਨਾਲ ਪੰਛੀਆਂ ਦੇ ਪੰਖਾਂ ਦੀ ਲੰਬਾਈ ਦਾ ਅਧਿਐਨ ਕਰੋ
ਸਧਾਰਨ ਅਤੇ ਜਟਿਲ ਪਲਾਟ ਅਤੇ ਚਾਰਟ ਬਣਾਉਣ ਲਈ ਇੱਕ ਸ਼ਾਨਦਾਰ ਲਾਇਬ੍ਰੇਰੀ Matplotlib ਹੈ। ਆਮ ਤੌਰ 'ਤੇ, ਡਾਟਾ ਨੂੰ ਪਲਾਟ ਕਰਨ ਦੀ ਪ੍ਰਕਿਰਿਆ ਵਿੱਚ ਇਹ ਸ਼ਾਮਲ ਹੁੰਦਾ ਹੈ ਕਿ ਤੁਸੀਂ ਆਪਣੇ ਡਾਟਾਫਰੇਮ ਦੇ ਕਿਹੜੇ ਹਿੱਸੇ ਨੂੰ ਟਾਰਗਟ ਕਰਨਾ ਹੈ, ਡਾਟਾ 'ਤੇ ਜ਼ਰੂਰੀ ਤਬਦੀਲੀਆਂ ਕਰਨੀ, ਇਸ ਦੇ x ਅਤੇ y ਅਕਸ ਮੁੱਲਾਂ ਨੂੰ ਨਿਰਧਾਰਤ ਕਰਨਾ, ਕਿਹੜੇ ਤਰ੍ਹਾਂ ਦਾ ਪਲਾਟ ਦਿਖਾਉਣਾ ਹੈ, ਅਤੇ ਫਿਰ ਪਲਾਟ ਦਿਖਾਉਣਾ। Matplotlib ਕਈ ਤਰ੍ਹਾਂ ਦੀਆਂ ਦ੍ਰਿਸ਼ਮਾਨਤਾਵਾਂ ਪੇਸ਼ ਕਰਦਾ ਹੈ, ਪਰ ਇਸ ਪਾਠ ਲਈ, ਆਓ ਉਹਨਾਂ 'ਤੇ ਧਿਆਨ ਦੇਈਏ ਜੋ ਮਾਤਰਾ ਨੂੰ ਦ੍ਰਿਸ਼ਮਾਨ ਕਰਨ ਲਈ ਸਭ ਤੋਂ ਉਚਿਤ ਹਨ: ਲਾਈਨ ਚਾਰਟ, ਸਕੈਟਰਪਲਾਟ, ਅਤੇ ਬਾਰ ਪਲਾਟ।
✅ ਆਪਣੇ ਡਾਟਾ ਦੀ ਬਣਤਰ ਅਤੇ ਕਹਾਣੀ ਨੂੰ ਦੱਸਣ ਲਈ ਸਭ ਤੋਂ ਵਧੀਆ ਚਾਰਟ ਦੀ ਵਰਤੋਂ ਕਰੋ।
- ਸਮੇਂ ਦੇ ਨਾਲ ਰੁਝਾਨਾਂ ਦਾ ਵਿਸ਼ਲੇਸ਼ਣ ਕਰਨ ਲਈ: ਲਾਈਨ
- ਮੁੱਲਾਂ ਦੀ ਤੁਲਨਾ ਕਰਨ ਲਈ: ਬਾਰ, ਕਾਲਮ, ਪਾਈ, ਸਕੈਟਰਪਲਾਟ
- ਦਿਖਾਉਣ ਲਈ ਕਿ ਹਿੱਸੇ ਪੂਰੇ ਨਾਲ ਕਿਵੇਂ ਸੰਬੰਧਿਤ ਹਨ: ਪਾਈ
- ਡਾਟਾ ਦੇ ਵੰਡ ਨੂੰ ਦਿਖਾਉਣ ਲਈ: ਸਕੈਟਰਪਲਾਟ, ਬਾਰ
- ਰੁਝਾਨ ਦਿਖਾਉਣ ਲਈ: ਲਾਈਨ, ਕਾਲਮ
- ਮੁੱਲਾਂ ਦੇ ਵਿਚਕਾਰ ਸੰਬੰਧ ਦਿਖਾਉਣ ਲਈ: ਲਾਈਨ, ਸਕੈਟਰਪਲਾਟ, ਬਬਲ
ਜੇ ਤੁਹਾਡੇ ਕੋਲ ਡਾਟਾਸੈਟ ਹੈ ਅਤੇ ਤੁਹਾਨੂੰ ਪਤਾ ਲਗਾਉਣ ਦੀ ਲੋੜ ਹੈ ਕਿ ਦਿੱਤੇ ਗਏ ਆਈਟਮ ਵਿੱਚ ਕਿੰਨਾ ਸ਼ਾਮਲ ਹੈ, ਤਾਂ ਤੁਹਾਡਾ ਪਹਿਲਾ ਕੰਮ ਇਸ ਦੇ ਮੁੱਲਾਂ ਦੀ ਜਾਂਚ ਕਰਨਾ ਹੋਵੇਗਾ।
✅ Matplotlib ਲਈ ਬਹੁਤ ਵਧੀਆ 'ਚੀਟ ਸ਼ੀਟ' ਇੱਥੇ ਉਪਲਬਧ ਹਨ।
ਪੰਛੀਆਂ ਦੇ ਪੰਖਾਂ ਦੀ ਵੱਧ ਤੋਂ ਵੱਧ ਲੰਬਾਈ ਬਾਰੇ ਲਾਈਨ ਪਲਾਟ ਬਣਾਓ
ਇਸ ਪਾਠ ਫੋਲਡਰ ਦੇ ਰੂਟ ਵਿੱਚ notebook.ipynb
ਫਾਈਲ ਖੋਲ੍ਹੋ ਅਤੇ ਇੱਕ ਸੈਲ ਸ਼ਾਮਲ ਕਰੋ।
ਨੋਟ: ਡਾਟਾ ਇਸ ਰਿਪੋ ਦੇ ਰੂਟ ਵਿੱਚ
/data
ਫੋਲਡਰ ਵਿੱਚ ਸਟੋਰ ਕੀਤਾ ਗਿਆ ਹੈ।
import pandas as pd
import matplotlib.pyplot as plt
birds = pd.read_csv('../../data/birds.csv')
birds.head()
ਇਹ ਡਾਟਾ ਟੈਕਸਟ ਅਤੇ ਨੰਬਰਾਂ ਦਾ ਮਿਸ਼ਰਣ ਹੈ:
Name | ScientificName | Category | Order | Family | Genus | ConservationStatus | MinLength | MaxLength | MinBodyMass | MaxBodyMass | MinWingspan | MaxWingspan | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | Black-bellied whistling-duck | Dendrocygna autumnalis | Ducks/Geese/Waterfowl | Anseriformes | Anatidae | Dendrocygna | LC | 47 | 56 | 652 | 1020 | 76 | 94 |
1 | Fulvous whistling-duck | Dendrocygna bicolor | Ducks/Geese/Waterfowl | Anseriformes | Anatidae | Dendrocygna | LC | 45 | 53 | 712 | 1050 | 85 | 93 |
2 | Snow goose | Anser caerulescens | Ducks/Geese/Waterfowl | Anseriformes | Anatidae | Anser | LC | 64 | 79 | 2050 | 4050 | 135 | 165 |
3 | Ross's goose | Anser rossii | Ducks/Geese/Waterfowl | Anseriformes | Anatidae | Anser | LC | 57.3 | 64 | 1066 | 1567 | 113 | 116 |
4 | Greater white-fronted goose | Anser albifrons | Ducks/Geese/Waterfowl | Anseriformes | Anatidae | Anser | LC | 64 | 81 | 1930 | 3310 | 130 | 165 |
ਆਓ ਕੁਝ ਅੰਕੀ ਡਾਟਾ ਨੂੰ ਇੱਕ ਬੁਨਿਆਦੀ ਲਾਈਨ ਪਲਾਟ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਪਲਾਟ ਕਰਨਾ ਸ਼ੁਰੂ ਕਰੀਏ। ਮੰਨੋ ਕਿ ਤੁਸੀਂ ਇਹ ਦ੍ਰਿਸ਼ਟੀ ਚਾਹੁੰਦੇ ਹੋ ਕਿ ਇਹ ਦਿਲਚਸਪ ਪੰਛੀਆਂ ਲਈ ਵੱਧ ਤੋਂ ਵੱਧ ਪੰਖਾਂ ਦੀ ਲੰਬਾਈ ਕੀ ਹੈ।
wingspan = birds['MaxWingspan']
wingspan.plot()
ਤੁਹਾਨੂੰ ਤੁਰੰਤ ਕੀ ਨਜ਼ਰ ਆਉਂਦਾ ਹੈ? ਘੱਟੋ-ਘੱਟ ਇੱਕ ਆਉਟਲਾਇਰ ਹੈ - ਇਹ ਕਾਫ਼ੀ ਵੱਡੀ ਪੰਖਾਂ ਦੀ ਲੰਬਾਈ ਹੈ! 2300 ਸੈਂਟੀਮੀਟਰ ਪੰਖਾਂ ਦੀ ਲੰਬਾਈ 23 ਮੀਟਰ ਦੇ ਬਰਾਬਰ ਹੈ - ਕੀ ਮਿਨੇਸੋਟਾ ਵਿੱਚ ਪਟੇਰੋਡੈਕਟਿਲ ਉੱਡ ਰਹੇ ਹਨ? ਆਓ ਜਾਂਚ ਕਰੀਏ।
ਹਾਲਾਂਕਿ ਤੁਸੀਂ Excel ਵਿੱਚ ਇੱਕ ਤੇਜ਼ ਸੋਰਟ ਕਰਕੇ ਉਹ ਆਉਟਲਾਇਰ ਲੱਭ ਸਕਦੇ ਹੋ, ਜੋ ਸ਼ਾਇਦ ਟਾਈਪੋਜ਼ ਹਨ, ਪਲਾਟ ਦੇ ਅੰਦਰੋਂ ਦ੍ਰਿਸ਼ਮਾਨਤਾ ਪ੍ਰਕਿਰਿਆ ਜਾਰੀ ਰੱਖੋ।
x-ਅਕਸ 'ਤੇ ਲੇਬਲ ਸ਼ਾਮਲ ਕਰੋ ਤਾਂ ਜੋ ਇਹ ਦਿਖਾ ਸਕੇ ਕਿ ਕਿਹੜੇ ਪੰਛੀ ਸਵਾਲ ਵਿੱਚ ਹਨ:
plt.title('Max Wingspan in Centimeters')
plt.ylabel('Wingspan (CM)')
plt.xlabel('Birds')
plt.xticks(rotation=45)
x = birds['Name']
y = birds['MaxWingspan']
plt.plot(x, y)
plt.show()
ਹਾਲਾਂਕਿ ਲੇਬਲਾਂ ਨੂੰ 45 ਡਿਗਰੀ 'ਤੇ ਘੁਮਾਉਣ ਦੇ ਬਾਵਜੂਦ, ਇਹ ਪੜ੍ਹਨ ਲਈ ਬਹੁਤ ਜ਼ਿਆਦਾ ਹਨ। ਆਓ ਇੱਕ ਵੱਖਰੀ ਰਣਨੀਤੀ ਅਪਣਾਈਏ: ਸਿਰਫ ਉਹਨਾਂ ਆਉਟਲਾਇਰਾਂ ਨੂੰ ਲੇਬਲ ਕਰੋ ਅਤੇ ਚਾਰਟ ਦੇ ਅੰਦਰ ਲੇਬਲ ਸੈਟ ਕਰੋ। ਤੁਸੀਂ ਲੇਬਲਿੰਗ ਲਈ ਹੋਰ ਜਗ੍ਹਾ ਬਣਾਉਣ ਲਈ ਇੱਕ ਸਕੈਟਰ ਚਾਰਟ ਦੀ ਵਰਤੋਂ ਕਰ ਸਕਦੇ ਹੋ:
plt.title('Max Wingspan in Centimeters')
plt.ylabel('Wingspan (CM)')
plt.tick_params(axis='both',which='both',labelbottom=False,bottom=False)
for i in range(len(birds)):
x = birds['Name'][i]
y = birds['MaxWingspan'][i]
plt.plot(x, y, 'bo')
if birds['MaxWingspan'][i] > 500:
plt.text(x, y * (1 - 0.05), birds['Name'][i], fontsize=12)
plt.show()
ਇੱਥੇ ਕੀ ਹੋ ਰਿਹਾ ਹੈ? ਤੁਸੀਂ tick_params
ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਹੇਠਲੇ ਲੇਬਲਾਂ ਨੂੰ ਲੁਕਾਇਆ ਅਤੇ ਫਿਰ ਆਪਣੇ ਪੰਛੀਆਂ ਦੇ ਡਾਟਾਸੈਟ 'ਤੇ ਇੱਕ ਲੂਪ ਬਣਾਇਆ। bo
ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਛੋਟੇ ਗੋਲ ਨੀਲੇ ਬਿੰਦੂ ਪਲਾਟ ਕਰਦੇ ਹੋਏ, ਤੁਸੀਂ ਕਿਸੇ ਵੀ ਪੰਛੀ ਦੀ ਜਾਂਚ ਕੀਤੀ ਜਿਸ ਦੀ ਵੱਧ ਤੋਂ ਵੱਧ ਪੰਖਾਂ ਦੀ ਲੰਬਾਈ 500 ਤੋਂ ਵੱਧ ਹੈ ਅਤੇ ਜੇਕਰ ਹੋਵੇ ਤਾਂ ਬਿੰਦੂ ਦੇ ਕੋਲ ਉਸ ਦਾ ਲੇਬਲ ਦਿਖਾਇਆ। ਤੁਸੀਂ y ਅਕਸ 'ਤੇ ਲੇਬਲਾਂ ਨੂੰ ਥੋੜ੍ਹਾ ਓਫਸੈਟ ਕੀਤਾ (y * (1 - 0.05)
) ਅਤੇ ਪੰਛੀ ਦੇ ਨਾਮ ਨੂੰ ਲੇਬਲ ਵਜੋਂ ਵਰਤਿਆ।
ਤੁਹਾਨੂੰ ਕੀ ਪਤਾ ਲੱਗਿਆ?
ਆਪਣੇ ਡਾਟਾ ਨੂੰ ਫਿਲਟਰ ਕਰੋ
ਬਾਲਡ ਈਗਲ ਅਤੇ ਪ੍ਰੇਰੀ ਫਾਲਕਨ, ਸ਼ਾਇਦ ਬਹੁਤ ਵੱਡੇ ਪੰਛੀ ਹਨ, ਗਲਤ ਲੇਬਲ ਕੀਤੇ ਗਏ ਲੱਗਦੇ ਹਨ, ਉਨ੍ਹਾਂ ਦੀ ਵੱਧ ਤੋਂ ਵੱਧ ਪੰਖਾਂ ਦੀ ਲੰਬਾਈ ਵਿੱਚ ਇੱਕ ਵਾਧੂ 0
ਸ਼ਾਮਲ ਹੈ। ਇਹ ਸੰਭਵ ਨਹੀਂ ਹੈ ਕਿ ਤੁਸੀਂ 25 ਮੀਟਰ ਪੰਖਾਂ ਵਾਲੇ ਬਾਲਡ ਈਗਲ ਨੂੰ ਮਿਲੋ, ਪਰ ਜੇਕਰ ਮਿਲੇ, ਤਾਂ ਕਿਰਪਾ ਕਰਕੇ ਸਾਨੂੰ ਦੱਸੋ! ਆਓ ਇੱਕ ਨਵਾਂ ਡਾਟਾਫਰੇਮ ਬਣਾਈਏ ਜਿਸ ਵਿੱਚ ਉਹ ਦੋ ਆਉਟਲਾਇਰ ਨਹੀਂ ਹਨ:
plt.title('Max Wingspan in Centimeters')
plt.ylabel('Wingspan (CM)')
plt.xlabel('Birds')
plt.tick_params(axis='both',which='both',labelbottom=False,bottom=False)
for i in range(len(birds)):
x = birds['Name'][i]
y = birds['MaxWingspan'][i]
if birds['Name'][i] not in ['Bald eagle', 'Prairie falcon']:
plt.plot(x, y, 'bo')
plt.show()
ਆਉਟਲਾਇਰਾਂ ਨੂੰ ਫਿਲਟਰ ਕਰਕੇ, ਹੁਣ ਤੁਹਾਡਾ ਡਾਟਾ ਹੋਰ ਸੰਗਠਿਤ ਅਤੇ ਸਮਝਣਯੋਗ ਹੈ।
ਹੁਣ ਜਦੋਂ ਕਿ ਸਾਡੇ ਕੋਲ ਪੰਖਾਂ ਦੀ ਲੰਬਾਈ ਦੇ ਹਿੱਸੇ ਵਿੱਚ ਘੱਟੋ-ਘੱਟ ਇੱਕ ਸਾਫ ਡਾਟਾਸੈਟ ਹੈ, ਆਓ ਇਹਨਾਂ ਪੰਛੀਆਂ ਬਾਰੇ ਹੋਰ ਪਤਾ ਲਗਾਈਏ।
ਹਾਲਾਂਕਿ ਲਾਈਨ ਅਤੇ ਸਕੈਟਰ ਪਲਾਟ ਡਾਟਾ ਮੁੱਲਾਂ ਅਤੇ ਉਨ੍ਹਾਂ ਦੇ ਵੰਡ ਬਾਰੇ ਜਾਣਕਾਰੀ ਦਿਖਾ ਸਕਦੇ ਹਨ, ਅਸੀਂ ਇਸ ਡਾਟਾਸੈਟ ਵਿੱਚ ਮੌਜੂਦ ਮੁੱਲਾਂ ਬਾਰੇ ਸੋਚਣਾ ਚਾਹੁੰਦੇ ਹਾਂ। ਤੁਸੀਂ ਮਾਤਰਾ ਬਾਰੇ ਹੇਠਾਂ ਦਿੱਤੇ ਸਵਾਲਾਂ ਦੇ ਜਵਾਬ ਦੇਣ ਲਈ ਦ੍ਰਿਸ਼ਮਾਨਤਾ ਬਣਾਉਣ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰ ਸਕਦੇ ਹੋ:
ਪੰਛੀਆਂ ਦੇ ਕਿੰਨੇ ਸ਼੍ਰੇਣੀਆਂ ਹਨ, ਅਤੇ ਉਨ੍ਹਾਂ ਦੀ ਗਿਣਤੀ ਕੀ ਹੈ?
ਕਿੰਨੇ ਪੰਛੀ ਲੁਪਤ, ਖਤਰੇ ਵਿੱਚ, ਦੁਲਭ, ਜਾਂ ਆਮ ਹਨ?
ਲਿਨੇਅਸ ਦੀ ਟਰਮੀਨੋਲੋਜੀ ਵਿੱਚ ਵੱਖ-ਵੱਖ ਜਨਸ ਅਤੇ ਆਰਡਰ ਦੇ ਕਿੰਨੇ ਹਨ?
ਬਾਰ ਚਾਰਟ ਦੀ ਖੋਜ ਕਰੋ
ਜਦੋਂ ਤੁਹਾਨੂੰ ਡਾਟਾ ਦੇ ਸਮੂਹ ਦਿਖਾਉਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ, ਤਾਂ ਬਾਰ ਚਾਰਟ ਵਿਵਹਾਰਕ ਹੁੰਦੇ ਹਨ। ਆਓ ਇਸ ਡਾਟਾਸੈਟ ਵਿੱਚ ਮੌਜੂਦ ਪੰਛੀਆਂ ਦੀਆਂ ਸ਼੍ਰੇਣੀਆਂ ਦੀ ਖੋਜ ਕਰੀਏ ਤਾਂ ਜੋ ਵੇਖਿਆ ਜਾ ਸਕੇ ਕਿ ਗਿਣਤੀ ਦੇ ਅਨੁਸਾਰ ਸਭ ਤੋਂ ਆਮ ਕਿਹੜੀ ਹੈ।
ਨੋਟਬੁੱਕ ਫਾਈਲ ਵਿੱਚ ਇੱਕ ਬੁਨਿਆਦੀ ਬਾਰ ਚਾਰਟ ਬਣਾਓ
✅ ਨੋਟ, ਤੁਸੀਂ ਪਿਛਲੇ ਭਾਗ ਵਿੱਚ ਪਛਾਣ ਕੀਤੇ ਦੋ ਆਉਟਲਾਇਰ ਪੰਛੀਆਂ ਨੂੰ ਫਿਲਟਰ ਕਰ ਸਕਦੇ ਹੋ, ਉਨ੍ਹਾਂ ਦੀ ਪੰਖਾਂ ਦੀ ਲੰਬਾਈ ਵਿੱਚ ਟਾਈਪੋ ਨੂੰ ਸੰਪਾਦਿਤ ਕਰ ਸਕਦੇ ਹੋ, ਜਾਂ ਉਨ੍ਹਾਂ ਨੂੰ ਛੱਡ ਸਕਦੇ ਹੋ ਜਿਨ੍ਹਾਂ ਦੀਆਂ ਕਸਰਤਾਂ ਪੰਖਾਂ ਦੀ ਲੰਬਾਈ ਦੇ ਮੁੱਲਾਂ 'ਤੇ ਨਿਰਭਰ ਨਹੀਂ ਕਰਦੀਆਂ।
ਜੇ ਤੁਸੀਂ ਬਾਰ ਚਾਰਟ ਬਣਾਉਣਾ ਚਾਹੁੰਦੇ ਹੋ, ਤਾਂ ਤੁਸੀਂ ਉਸ ਡਾਟਾ ਨੂੰ ਚੁਣ ਸਕਦੇ ਹੋ ਜਿਸ 'ਤੇ ਤੁਸੀਂ ਧਿਆਨ ਕੇਂਦ੍ਰਿਤ ਕਰਨਾ ਚਾਹੁੰਦੇ ਹੋ। ਬਾਰ ਚਾਰਟ ਕੱਚੇ ਡਾਟਾ ਤੋਂ ਬਣਾਏ ਜਾ ਸਕਦੇ ਹਨ:
birds.plot(x='Category',
kind='bar',
stacked=True,
title='Birds of Minnesota')
ਹਾਲਾਂਕਿ ਇਹ ਬਾਰ ਚਾਰਟ ਪੜ੍ਹਨਯੋਗ ਨਹੀਂ ਹੈ ਕਿਉਂਕਿ ਬਹੁਤ ਜ਼ਿਆਦਾ ਗੈਰ-ਸਮੂਹਬੱਧ ਡਾਟਾ ਹੈ। ਤੁਹਾਨੂੰ ਸਿਰਫ ਉਸ ਡਾਟਾ ਨੂੰ ਚੁਣਨਾ ਹੋਵੇਗਾ ਜਿਸ ਨੂੰ ਤੁਸੀਂ ਪਲਾਟ ਕਰਨਾ ਚਾਹੁੰਦੇ ਹੋ, ਇਸ ਲਈ ਆਓ ਪੰਛੀਆਂ ਦੀ ਸ਼੍ਰੇਣੀ ਦੇ ਅਧਾਰ 'ਤੇ ਉਨ੍ਹਾਂ ਦੀ ਲੰਬਾਈ ਦੇਖੀਏ।
ਆਪਣੇ ਡਾਟਾ ਨੂੰ ਸਿਰਫ ਪੰਛੀਆਂ ਦੀ ਸ਼੍ਰੇਣੀ ਸ਼ਾਮਲ ਕਰਨ ਲਈ ਫਿਲਟਰ ਕਰੋ।
✅ ਧਿਆਨ ਦਿਓ ਕਿ ਤੁਸੀਂ Pandas ਦੀ ਵਰਤੋਂ ਡਾਟਾ ਨੂੰ ਪ੍ਰਬੰਧਿਤ ਕਰਨ ਲਈ ਕਰਦੇ ਹੋ, ਅਤੇ ਫਿਰ Matplotlib ਨੂੰ ਚਾਰਟਿੰਗ ਕਰਨ ਦਿੰਦੇ ਹੋ।
ਕਿਉਂਕਿ ਬਹੁਤ ਸਾਰੀਆਂ ਸ਼੍ਰੇਣੀਆਂ ਹਨ, ਤੁਸੀਂ ਇਸ ਚਾਰਟ ਨੂੰ ਲੰਬਵੱਖ ਕਰਕੇ ਦਿਖਾ ਸਕਦੇ ਹੋ ਅਤੇ ਸਾਰੇ ਡਾਟਾ ਨੂੰ ਸਮਾਉਣ ਲਈ ਇਸ ਦੀ ਉਚਾਈ ਨੂੰ ਠੀਕ ਕਰ ਸਕਦੇ ਹੋ:
category_count = birds.value_counts(birds['Category'].values, sort=True)
plt.rcParams['figure.figsize'] = [6, 12]
category_count.plot.barh()
ਇਹ ਬਾਰ ਚਾਰਟ ਪੰਛੀਆਂ ਦੀ ਹਰ ਸ਼੍ਰੇਣੀ ਵਿੱਚ ਪੰਛੀਆਂ ਦੀ ਗਿਣਤੀ ਦਾ ਇੱਕ ਵਧੀਆ ਦ੍ਰਿਸ਼ਟੀਕੋਣ ਦਿਖਾਉਂਦਾ ਹੈ। ਇੱਕ ਪਲਕ ਵਿੱਚ, ਤੁਸੀਂ ਵੇਖਦੇ ਹੋ ਕਿ ਇਸ ਖੇਤਰ ਵਿੱਚ ਸਭ ਤੋਂ ਵੱਡੀ ਗਿਣਤੀ ਪੰਛੀਆਂ Ducks/Geese/Waterfowl ਸ਼੍ਰੇਣੀ ਵਿੱਚ ਹਨ। ਮਿਨੇਸੋਟਾ '10,000 ਝੀਲਾਂ ਦੀ ਧਰਤੀ' ਹੈ ਇਸ ਲਈ ਇਹ ਹੈਰਾਨੀਜਨਕ ਨਹੀਂ ਹੈ!
✅ ਇਸ ਡਾਟਾਸੈਟ 'ਤੇ ਕੁਝ ਹੋਰ ਗਿਣਤੀਆਂ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰੋ। ਕੀ ਤੁਹਾਨੂੰ ਕੁਝ ਹੈਰਾਨ ਕਰਦਾ ਹੈ?
ਡਾਟਾ ਦੀ ਤੁਲਨਾ
ਤੁਸੀਂ ਸਮੂਹਬੱਧ ਡਾਟਾ ਦੀਆਂ ਵੱਖ-ਵੱਖ ਤੁਲਨਾਵਾਂ ਕਰਨ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰ ਸਕਦੇ ਹੋ ਨਵੇਂ ਅਕਸ ਬਣਾਕe। ਪੰਛੀਆਂ ਦੀ ਸ਼੍ਰੇਣੀ ਦੇ ਅਧਾਰ 'ਤੇ ਪੰਛੀਆਂ ਦੀ ਵੱਧ ਤੋਂ ਵੱਧ ਲੰਬਾਈ ਦੀ ਤੁਲਨਾ ਕਰਨ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰੋ:
maxlength = birds['MaxLength']
plt.barh(y=birds['Category'], width=maxlength)
plt.rcParams['figure.figsize'] = [6, 12]
plt.show()
ਇੱਥੇ ਕੁਝ ਹੈਰਾਨੀਜਨਕ ਨਹੀਂ ਹੈ: ਹਮਿੰਗਬਰਡਜ਼ ਦੀ ਵੱਧ ਤੋਂ ਵੱਧ ਲੰਬਾਈ ਪੈਲਿਕਨ ਜਾਂ ਗੀਜ਼ ਦੇ ਮੁਕਾਬਲੇ ਘੱਟ ਹੈ। ਇਹ ਚੰਗਾ ਹੈ ਜਦੋਂ ਡਾਟਾ ਤਰਕਸੰਗਤ ਹੁੰਦਾ ਹੈ!
ਤੁਸੀਂ ਬਾਰ ਚਾਰਟ ਦੀਆਂ ਹੋਰ ਦਿਲਚਸਪ ਦ੍ਰਿਸ਼ਮਾਨਤਾਵਾਂ ਬਣਾਉਣ ਲਈ ਡਾਟਾ ਨੂੰ ਸਪਰਿੰਪੋਜ਼ ਕਰ ਸਕਦੇ ਹੋ। ਆਓ ਪੰਛੀਆਂ ਦੀ ਸ਼੍ਰੇਣੀ 'ਤੇ ਘੱਟੋ-ਘੱਟ ਅਤੇ ਵੱਧ ਤੋਂ ਵੱਧ ਲੰਬਾਈ ਨੂੰ ਸਪਰਿੰਪੋਜ਼ ਕਰੀਏ:
minLength = birds['MinLength']
maxLength = birds['MaxLength']
category = birds['Category']
plt.barh(category, maxLength)
plt.barh(category, minLength)
plt.show()
ਇਸ ਪਲਾਟ ਵਿੱਚ, ਤੁਸੀਂ ਘੱਟੋ-ਘੱਟ ਲੰਬਾਈ ਅਤੇ ਵੱਧ ਤੋਂ ਵੱਧ ਲੰਬਾਈ ਦੀ ਸ਼੍ਰੇਣੀ ਨੂੰ ਪੰਛੀਆਂ ਦੀ ਸ਼੍ਰੇਣੀ ਪ੍ਰਤੀ ਵੇਖ ਸਕਦੇ ਹੋ। ਤੁਸੀਂ ਸੁਰੱਖਿਅਤ ਤੌਰ 'ਤੇ ਕਹਿ ਸਕਦੇ ਹੋ ਕਿ, ਇਸ ਡਾਟਾ ਦੇ ਅਨੁਸਾਰ, ਜਿੰਨਾ ਵੱਡਾ ਪੰਛੀ, ਉਨ੍ਹਾਂ ਦੀ ਲੰਬਾਈ ਦੀ ਸ਼੍ਰੇਣੀ ਉਤਨੀ ਵੱਡੀ। ਦਿਲਚਸਪ!
🚀 ਚੁਣੌਤੀ
ਇਹ ਪੰਛੀਆਂ ਦਾ ਡਾਟਾਸੈਟ ਇੱਕ ਵਿਸ਼ੇਸ਼ ਪਾਰਿਸਥਿਤਿਕੀ ਤੰਤਰ ਵਿੱਚ ਵੱਖ-ਵੱਖ ਕਿਸਮਾਂ ਦੇ ਪੰਛੀਆਂ ਬਾਰੇ ਬਹੁਤ ਸਾਰੀ ਜਾਣਕਾਰੀ ਪੇਸ਼ ਕਰਦਾ ਹੈ। ਇੰਟਰਨੈਟ 'ਤੇ ਖੋਜ ਕਰੋ ਅਤੇ ਵੇਖੋ ਕਿ ਕੀ ਤੁਸੀਂ ਪੰਛੀਆਂ-ਅਧਾਰਿਤ ਹੋਰ ਡਾਟਾਸ
ਅਸਵੀਕਤੀ:
ਇਹ ਦਸਤਾਵੇਜ਼ AI ਅਨੁਵਾਦ ਸੇਵਾ Co-op Translator ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਅਨੁਵਾਦ ਕੀਤਾ ਗਿਆ ਹੈ। ਜਦੋਂ ਕਿ ਅਸੀਂ ਸਹੀਤਾ ਲਈ ਯਤਨਸ਼ੀਲ ਹਾਂ, ਕਿਰਪਾ ਕਰਕੇ ਧਿਆਨ ਦਿਓ ਕਿ ਸਵੈਚਾਲਿਤ ਅਨੁਵਾਦਾਂ ਵਿੱਚ ਗਲਤੀਆਂ ਜਾਂ ਅਸੁਚਨਾਵਾਂ ਹੋ ਸਕਦੀਆਂ ਹਨ। ਮੂਲ ਦਸਤਾਵੇਜ਼ ਨੂੰ ਇਸਦੀ ਮੂਲ ਭਾਸ਼ਾ ਵਿੱਚ ਅਧਿਕਾਰਤ ਸਰੋਤ ਮੰਨਿਆ ਜਾਣਾ ਚਾਹੀਦਾ ਹੈ। ਮਹੱਤਵਪੂਰਨ ਜਾਣਕਾਰੀ ਲਈ, ਪੇਸ਼ੇਵਰ ਮਨੁੱਖੀ ਅਨੁਵਾਦ ਦੀ ਸਿਫਾਰਸ਼ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਇਸ ਅਨੁਵਾਦ ਦੀ ਵਰਤੋਂ ਤੋਂ ਪੈਦਾ ਹੋਣ ਵਾਲੇ ਕਿਸੇ ਵੀ ਗਲਤ ਫਹਿਮੀ ਜਾਂ ਗਲਤ ਵਿਆਖਿਆ ਲਈ ਅਸੀਂ ਜ਼ਿੰਮੇਵਾਰ ਨਹੀਂ ਹਾਂ।