You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

16 KiB

ਡਾਟਾ ਦੇ ਕਿਸਮਾਂ

ਜਿਵੇਂ ਕਿ ਅਸੀਂ ਪਹਿਲਾਂ ਹੀ ਕਿਹਾ ਹੈ, ਡਾਟਾ ਹਰ ਜਗ੍ਹਾ ਹੈ। ਸਾਨੂੰ ਇਸਨੂੰ ਸਹੀ ਤਰੀਕੇ ਨਾਲ ਕੈਪਚਰ ਕਰਨ ਦੀ ਲੋੜ ਹੈ! ਇਹ ਸੰਰਚਿਤ ਅਤੇ ਅਸੰਰਚਿਤ ਡਾਟਾ ਵਿੱਚ ਫਰਕ ਕਰਨਾ ਲਾਭਦਾਇਕ ਹੈ। ਸੰਰਚਿਤ ਡਾਟਾ ਆਮ ਤੌਰ 'ਤੇ ਕਿਸੇ ਚੰਗੀ-ਤਰੀਕੇ ਨਾਲ ਸੰਰਚਿਤ ਰੂਪ ਵਿੱਚ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ, ਜਿਵੇਂ ਕਿ ਇੱਕ ਟੇਬਲ ਜਾਂ ਕਈ ਟੇਬਲਾਂ ਦੇ ਰੂਪ ਵਿੱਚ। ਅਸੰਰਚਿਤ ਡਾਟਾ ਸਿਰਫ਼ ਫਾਈਲਾਂ ਦਾ ਇਕੱਠ ਹੁੰਦਾ ਹੈ। ਕਈ ਵਾਰ ਅਸੀਂ ਅਰਧ-ਸੰਰਚਿਤ ਡਾਟਾ ਬਾਰੇ ਵੀ ਗੱਲ ਕਰ ਸਕਦੇ ਹਾਂ, ਜਿਸ ਵਿੱਚ ਕੁਝ ਤਰ੍ਹਾਂ ਦੀ ਸੰਰਚਨਾ ਹੁੰਦੀ ਹੈ ਜੋ ਕਾਫ਼ੀ ਵੱਖ-ਵੱਖ ਹੋ ਸਕਦੀ ਹੈ।

ਸੰਰਚਿਤ ਅਰਧ-ਸੰਰਚਿਤ ਅਸੰਰਚਿਤ
ਲੋਕਾਂ ਦੀ ਸੂਚੀ ਉਨ੍ਹਾਂ ਦੇ ਫੋਨ ਨੰਬਰਾਂ ਦੇ ਨਾਲ ਵਿਕੀਪੀਡੀਆ ਪੰਨੇ ਲਿੰਕਾਂ ਦੇ ਨਾਲ ਐਨਸਾਈਕਲੋਪੀਡੀਆ ਬ੍ਰਿਟਾਨਿਕਾ ਦਾ ਟੈਕਸਟ
ਪਿਛਲੇ 20 ਸਾਲਾਂ ਵਿੱਚ ਹਰ ਮਿੰਟ ਵਿੱਚ ਇੱਕ ਇਮਾਰਤ ਦੇ ਸਾਰੇ ਕਮਰਿਆਂ ਦਾ ਤਾਪਮਾਨ JSON ਫਾਰਮੈਟ ਵਿੱਚ ਵਿਗਿਆਨਕ ਪੇਪਰਾਂ ਦਾ ਇਕੱਠ, ਜਿਸ ਵਿੱਚ ਲੇਖਕ, ਪ੍ਰਕਾਸ਼ਨ ਦੀ ਮਿਤੀ ਅਤੇ ਸਾਰांश ਸ਼ਾਮਲ ਹਨ ਕਾਰਪੋਰੇਟ ਦਸਤਾਵੇਜ਼ਾਂ ਦੇ ਨਾਲ ਫਾਈਲ ਸ਼ੇਅਰ
ਇਮਾਰਤ ਵਿੱਚ ਦਾਖਲ ਹੋਣ ਵਾਲੇ ਸਾਰੇ ਲੋਕਾਂ ਦੀ ਉਮਰ ਅਤੇ ਲਿੰਗ ਦਾ ਡਾਟਾ ਇੰਟਰਨੈਟ ਪੰਨੇ ਨਿਗਰਾਨੀ ਕੈਮਰੇ ਤੋਂ ਕੱਚਾ ਵੀਡੀਓ ਫੀਡ

ਡਾਟਾ ਕਿੱਥੋਂ ਮਿਲ ਸਕਦਾ ਹੈ

ਡਾਟਾ ਦੇ ਕਈ ਸੰਭਾਵਿਤ ਸਰੋਤ ਹਨ, ਅਤੇ ਉਨ੍ਹਾਂ ਨੂੰ ਸਾਰਿਆਂ ਨੂੰ ਸੂਚੀਬੱਧ ਕਰਨਾ ਅਸੰਭਵ ਹੋਵੇਗਾ! ਪਰ, ਆਓ ਕੁਝ ਆਮ ਜਗ੍ਹਾਂ ਦਾ ਜ਼ਿਕਰ ਕਰੀਏ ਜਿੱਥੇ ਤੁਸੀਂ ਡਾਟਾ ਪ੍ਰਾਪਤ ਕਰ ਸਕਦੇ ਹੋ:

  • ਸੰਰਚਿਤ
    • Internet of Things (IoT), ਜਿਸ ਵਿੱਚ ਵੱਖ-ਵੱਖ ਸੈਂਸਰਾਂ ਤੋਂ ਡਾਟਾ ਸ਼ਾਮਲ ਹੈ, ਜਿਵੇਂ ਕਿ ਤਾਪਮਾਨ ਜਾਂ ਦਬਾਅ ਸੈਂਸਰ। ਉਦਾਹਰਣ ਲਈ, ਜੇਕਰ ਇੱਕ ਦਫ਼ਤਰ ਦੀ ਇਮਾਰਤ IoT ਸੈਂਸਰਾਂ ਨਾਲ ਸਜਾਈ ਗਈ ਹੈ, ਤਾਂ ਅਸੀਂ ਖਰਚੇ ਘਟਾਉਣ ਲਈ ਹੀਟਿੰਗ ਅਤੇ ਲਾਈਟਿੰਗ ਨੂੰ ਆਟੋਮੈਟਿਕ ਤਰੀਕੇ ਨਾਲ ਕੰਟਰੋਲ ਕਰ ਸਕਦੇ ਹਾਂ।
    • ਸਰਵੇਖਣਾਂ, ਜਿਨ੍ਹਾਂ ਨੂੰ ਅਸੀਂ ਉਪਭੋਗਤਾਵਾਂ ਨੂੰ ਖਰੀਦਦਾਰੀ ਤੋਂ ਬਾਅਦ ਜਾਂ ਵੈਬਸਾਈਟ 'ਤੇ ਜਾਓਣ ਤੋਂ ਬਾਅਦ ਪੂਰਾ ਕਰਨ ਲਈ ਕਹਿੰਦੇ ਹਾਂ।
    • ਵਿਹਾਰ ਦਾ ਵਿਸ਼ਲੇਸ਼ਣ, ਜੋ ਸਾਨੂੰ ਇਹ ਸਮਝਣ ਵਿੱਚ ਮਦਦ ਕਰ ਸਕਦਾ ਹੈ ਕਿ ਇੱਕ ਉਪਭੋਗਤਾ ਵੈਬਸਾਈਟ ਵਿੱਚ ਕਿੰਨਾ ਗਹਿਰਾਈ ਵਿੱਚ ਜਾਂਦਾ ਹੈ ਅਤੇ ਵੈਬਸਾਈਟ ਛੱਡਣ ਦਾ ਆਮ ਕਾਰਨ ਕੀ ਹੈ।
  • ਅਸੰਰਚਿਤ
    • ਟੈਕਸਟ, ਜਿਵੇਂ ਕਿ ਸੈਂਟੀਮੈਂਟ ਸਕੋਰ ਜਾਂ ਕੁੰਜੀ ਸ਼ਬਦ ਅਤੇ ਅਰਥਮੂਲਕ ਮਤਲਬ ਕੱਢਣ ਲਈ।
    • ਚਿੱਤਰ ਜਾਂ ਵੀਡੀਓ। ਨਿਗਰਾਨੀ ਕੈਮਰੇ ਤੋਂ ਵੀਡੀਓ ਸੜਕ 'ਤੇ ਟ੍ਰੈਫਿਕ ਦਾ ਅੰਦਾਜ਼ਾ ਲਗਾਉਣ ਲਈ ਵਰਤੀ ਜਾ ਸਕਦੀ ਹੈ ਅਤੇ ਲੋਕਾਂ ਨੂੰ ਸੰਭਾਵਿਤ ਟ੍ਰੈਫਿਕ ਜਾਮ ਬਾਰੇ ਸੂਚਿਤ ਕਰ ਸਕਦੀ ਹੈ।
    • ਵੈਬ ਸਰਵਰ ਲਾਗ, ਜੋ ਸਾਨੂੰ ਇਹ ਸਮਝਣ ਵਿੱਚ ਮਦਦ ਕਰ ਸਕਦੇ ਹਨ ਕਿ ਸਾਡੀ ਵੈਬਸਾਈਟ ਦੇ ਕਿਹੜੇ ਪੰਨੇ ਸਭ ਤੋਂ ਵੱਧ ਵਾਰ ਵੇਖੇ ਜਾਂਦੇ ਹਨ ਅਤੇ ਕਿੰਨੇ ਸਮੇਂ ਲਈ।
  • ਅਰਧ-ਸੰਰਚਿਤ
    • ਸੋਸ਼ਲ ਨੈਟਵਰਕ ਗ੍ਰਾਫ, ਜੋ ਉਪਭੋਗਤਾ ਦੇ ਵਿਅਕਤੀਗਤ ਗੁਣਾਂ ਅਤੇ ਜਾਣਕਾਰੀ ਫੈਲਾਉਣ ਵਿੱਚ ਸੰਭਾਵਿਤ ਪ੍ਰਭਾਵਸ਼ਾਲੀਤਾ ਬਾਰੇ ਡਾਟਾ ਦੇ ਸ਼ਾਨਦਾਰ ਸਰੋਤ ਹੋ ਸਕਦੇ ਹਨ।
    • ਜਦੋਂ ਸਾਡੇ ਕੋਲ ਪਾਰਟੀ ਤੋਂ ਫੋਟੋਆਂ ਦਾ ਇਕੱਠ ਹੁੰਦਾ ਹੈ, ਅਸੀਂ ਗਰੁੱਪ ਡਾਇਨਾਮਿਕਸ ਡਾਟਾ ਕੱਢਣ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰ ਸਕਦੇ ਹਾਂ, ਜਿਵੇਂ ਕਿ ਉਹਨਾਂ ਲੋਕਾਂ ਦਾ ਗ੍ਰਾਫ ਬਣਾਉਣਾ ਜੋ ਇੱਕ ਦੂਜੇ ਨਾਲ ਤਸਵੀਰਾਂ ਲੈ ਰਹੇ ਹਨ।

ਵੱਖ-ਵੱਖ ਸੰਭਾਵਿਤ ਡਾਟਾ ਸਰੋਤਾਂ ਨੂੰ ਜਾਣ ਕੇ, ਤੁਸੀਂ ਵੱਖ-ਵੱਖ ਸਥਿਤੀਆਂ ਬਾਰੇ ਸੋਚ ਸਕਦੇ ਹੋ ਜਿੱਥੇ ਡਾਟਾ ਸਾਇੰਸ ਤਕਨੀਕਾਂ ਨੂੰ ਲਾਗੂ ਕਰਕੇ ਸਥਿਤੀ ਨੂੰ ਬਿਹਤਰ ਸਮਝਿਆ ਜਾ ਸਕਦਾ ਹੈ ਅਤੇ ਵਪਾਰਕ ਪ੍ਰਕਿਰਿਆਵਾਂ ਨੂੰ ਸੁਧਾਰਿਆ ਜਾ ਸਕਦਾ ਹੈ।

ਡਾਟਾ ਨਾਲ ਕੀ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ

ਡਾਟਾ ਸਾਇੰਸ ਵਿੱਚ, ਅਸੀਂ ਡਾਟਾ ਯਾਤਰਾ ਦੇ ਹੇਠਾਂ ਦਿੱਤੇ ਕਦਮਾਂ 'ਤੇ ਧਿਆਨ ਦਿੰਦੇ ਹਾਂ:

ਡਿਜ਼ੀਟਲਾਈਜ਼ੇਸ਼ਨ ਅਤੇ ਡਿਜ਼ੀਟਲ ਰੂਪਾਂਤਰਨ

ਪਿਛਲੇ ਦਹਾਕੇ ਵਿੱਚ, ਕਈ ਵਪਾਰਾਂ ਨੇ ਵਪਾਰਕ ਫੈਸਲੇ ਲੈਂਦੇ ਸਮੇਂ ਡਾਟਾ ਦੀ ਮਹੱਤਤਾ ਨੂੰ ਸਮਝਣਾ ਸ਼ੁਰੂ ਕੀਤਾ। ਵਪਾਰ ਚਲਾਉਣ ਲਈ ਡਾਟਾ ਸਾਇੰਸ ਦੇ ਸਿਧਾਂਤਾਂ ਨੂੰ ਲਾਗੂ ਕਰਨ ਲਈ, ਪਹਿਲਾਂ ਕੁਝ ਡਾਟਾ ਇਕੱਠਾ ਕਰਨ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ, ਜ਼ਿਆਦਾ ਸਪਸ਼ਟ ਤੌਰ 'ਤੇ, ਵਪਾਰਕ ਪ੍ਰਕਿਰਿਆਵਾਂ ਨੂੰ ਡਿਜ਼ੀਟਲ ਰੂਪ ਵਿੱਚ ਅਨੁਵਾਦ ਕਰਨਾ। ਇਸਨੂੰ ਡਿਜ਼ੀਟਲਾਈਜ਼ੇਸ਼ਨ ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਇਸ ਡਾਟਾ 'ਤੇ ਡਾਟਾ ਸਾਇੰਸ ਤਕਨੀਕਾਂ ਨੂੰ ਲਾਗੂ ਕਰਕੇ ਫੈਸਲੇ ਲੈਣ ਨਾਲ ਉਤਪਾਦਕਤਾ ਵਿੱਚ ਮਹੱਤਵਪੂਰਨ ਵਾਧਾ ਹੋ ਸਕਦਾ ਹੈ (ਜਾਂ ਵਪਾਰਕ ਰੂਪਾਂਤਰਨ), ਜਿਸਨੂੰ ਡਿਜ਼ੀਟਲ ਰੂਪਾਂਤਰਨ ਕਿਹਾ ਜਾਂਦਾ ਹੈ।

ਆਓ ਇੱਕ ਉਦਾਹਰਣ ਦੇਖੀਏ। ਮੰਨ ਲਓ ਕਿ ਸਾਡੇ ਕੋਲ ਇੱਕ ਡਾਟਾ ਸਾਇੰਸ ਕੋਰਸ ਹੈ (ਜਿਵੇਂ ਕਿ ਇਹ), ਜਿਸਨੂੰ ਅਸੀਂ ਵਿਦਿਆਰਥੀਆਂ ਨੂੰ ਆਨਲਾਈਨ ਮੁਹੱਈਆ ਕਰਦੇ ਹਾਂ, ਅਤੇ ਅਸੀਂ ਇਸਨੂੰ ਸੁਧਾਰਨ ਲਈ ਡਾਟਾ ਸਾਇੰਸ ਦੀ ਵਰਤੋਂ ਕਰਨਾ ਚਾਹੁੰਦੇ ਹਾਂ। ਅਸੀਂ ਇਸਨੂੰ ਕਿਵੇਂ ਕਰ ਸਕਦੇ ਹਾਂ?

ਅਸੀਂ "ਕੀ ਡਿਜ਼ੀਟਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ?" ਪੁੱਛ ਕੇ ਸ਼ੁਰੂ ਕਰ ਸਕਦੇ ਹਾਂ। ਸਭ ਤੋਂ ਸਧਾਰਨ ਤਰੀਕਾ ਇਹ ਹੋਵੇਗਾ ਕਿ ਹਰ ਵਿਦਿਆਰਥੀ ਨੂੰ ਹਰ ਮੋਡਿਊਲ ਪੂਰਾ ਕਰਨ ਵਿੱਚ ਲੱਗਣ ਵਾਲੇ ਸਮੇਂ ਨੂੰ ਮਾਪਿਆ ਜਾਵੇ ਅਤੇ ਹਰ ਮੋਡਿਊਲ ਦੇ ਅੰਤ ਵਿੱਚ ਇੱਕ ਮਲਟੀਪਲ-ਚੋਇਸ ਟੈਸਟ ਦੇ ਕੇ ਪ੍ਰਾਪਤ ਗਿਆਨ ਨੂੰ ਮਾਪਿਆ ਜਾਵੇ। ਸਾਰੇ ਵਿਦਿਆਰਥੀਆਂ ਵਿੱਚ ਸਮਾਂ-ਪੂਰਾ ਕਰਨ ਦੇ ਔਸਤ ਨੂੰ ਮਾਪ ਕੇ, ਅਸੀਂ ਇਹ ਪਤਾ ਲਗਾ ਸਕਦੇ ਹਾਂ ਕਿ ਕਿਹੜੇ ਮੋਡਿਊਲ ਵਿਦਿਆਰਥੀਆਂ ਲਈ ਸਭ ਤੋਂ ਵੱਧ ਮੁਸ਼ਕਲਾਂ ਪੈਦਾ ਕਰਦੇ ਹਨ ਅਤੇ ਉਨ੍ਹਾਂ ਨੂੰ ਸਧਾਰਨ ਬਣਾਉਣ 'ਤੇ ਕੰਮ ਕਰ ਸਕਦੇ ਹਨ। ਤੁਸੀਂ ਦਲੀਲ ਕਰ ਸਕਦੇ ਹੋ ਕਿ ਇਹ ਤਰੀਕਾ ਆਦਰਸ਼ ਨਹੀਂ ਹੈ, ਕਿਉਂਕਿ ਮੋਡੀਊਲ ਵੱਖ-ਵੱਖ ਲੰਬਾਈ ਦੇ ਹੋ ਸਕਦੇ ਹਨ। ਸ਼ਾਇਦ ਸਮਾਂ ਨੂੰ ਮੋਡੀਊਲ ਦੀ ਲੰਬਾਈ (ਅੱਖਰਾਂ ਦੀ ਗਿਣਤੀ ਵਿੱਚ) ਨਾਲ ਵੰਡਣਾ ਅਤੇ ਉਹਨਾਂ ਮੁੱਲਾਂ ਦੀ ਤੁਲਨਾ ਕਰਨਾ ਜ਼ਿਆਦਾ ਨਿਆਂਯੁਕਤ ਹੋਵੇ। ਜਦੋਂ ਅਸੀਂ ਬਹੁ-ਚੋਣ ਪ੍ਰਸ਼ਨਾਂ ਦੇ ਨਤੀਜਿਆਂ ਦਾ ਵਿਸ਼ਲੇਸ਼ਣ ਕਰਨਾ ਸ਼ੁਰੂ ਕਰਦੇ ਹਾਂ, ਤਾਂ ਅਸੀਂ ਇਹ ਪਤਾ ਲਗਾਉਣ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰ ਸਕਦੇ ਹਾਂ ਕਿ ਵਿਦਿਆਰਥੀਆਂ ਨੂੰ ਕਿਹੜੇ ਸੰਕਲਪ ਸਮਝਣ ਵਿੱਚ ਮੁਸ਼ਕਲ ਆ ਰਹੀ ਹੈ, ਅਤੇ ਇਸ ਜਾਣਕਾਰੀ ਨੂੰ ਸਮੱਗਰੀ ਨੂੰ ਬਿਹਤਰ ਬਣਾਉਣ ਲਈ ਵਰਤ ਸਕਦੇ ਹਾਂ। ਇਹ ਕਰਨ ਲਈ, ਸਾਨੂੰ ਪ੍ਰਸ਼ਨਾਂ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਡਿਜ਼ਾਈਨ ਕਰਨਾ ਪਵੇਗਾ ਕਿ ਹਰ ਪ੍ਰਸ਼ਨ ਕਿਸੇ ਖਾਸ ਸੰਕਲਪ ਜਾਂ ਗਿਆਨ ਦੇ ਹਿੱਸੇ ਨਾਲ ਜੁੜਿਆ ਹੋਵੇ।

ਜੇ ਅਸੀਂ ਹੋਰ ਜਟਿਲ ਹੋਣਾ ਚਾਹੁੰਦੇ ਹਾਂ, ਤਾਂ ਅਸੀਂ ਹਰ ਮੋਡੀਊਲ ਲਈ ਲੱਗਣ ਵਾਲੇ ਸਮੇਂ ਨੂੰ ਵਿਦਿਆਰਥੀਆਂ ਦੀ ਉਮਰ ਸ਼੍ਰੇਣੀ ਦੇ ਮੁਕਾਬਲੇ ਪਲਾਟ ਕਰ ਸਕਦੇ ਹਾਂ। ਸਾਨੂੰ ਪਤਾ ਲੱਗ ਸਕਦਾ ਹੈ ਕਿ ਕੁਝ ਉਮਰ ਸ਼੍ਰੇਣੀਆਂ ਲਈ ਮੋਡੀਊਲ ਪੂਰਾ ਕਰਨ ਵਿੱਚ ਬੇਹਦ ਜ਼ਿਆਦਾ ਸਮਾਂ ਲੱਗਦਾ ਹੈ, ਜਾਂ ਵਿਦਿਆਰਥੀ ਇਸਨੂੰ ਪੂਰਾ ਕਰਨ ਤੋਂ ਪਹਿਲਾਂ ਹੀ ਛੱਡ ਦਿੰਦੇ ਹਨ। ਇਹ ਸਾਨੂੰ ਮੋਡੀਊਲ ਲਈ ਉਮਰ ਦੀ ਸਿਫਾਰਸ਼ਾਂ ਦੇਣ ਵਿੱਚ ਮਦਦ ਕਰ ਸਕਦਾ ਹੈ ਅਤੇ ਗਲਤ ਉਮੀਦਾਂ ਕਾਰਨ ਹੋਣ ਵਾਲੀ ਨਿਰਾਸ਼ਾ ਨੂੰ ਘਟਾ ਸਕਦਾ ਹੈ।

🚀 ਚੁਣੌਤੀ

ਇਸ ਚੁਣੌਤੀ ਵਿੱਚ, ਅਸੀਂ ਡਾਟਾ ਸਾਇੰਸ ਦੇ ਖੇਤਰ ਨਾਲ ਸਬੰਧਤ ਸੰਕਲਪਾਂ ਨੂੰ ਪਛਾਣਨ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰਾਂਗੇ, ਟੈਕਸਟ ਨੂੰ ਦੇਖ ਕੇ। ਅਸੀਂ ਡਾਟਾ ਸਾਇੰਸ 'ਤੇ ਇੱਕ ਵਿਕੀਪੀਡੀਆ ਲੇਖ ਲਵਾਂਗੇ, ਟੈਕਸਟ ਡਾਊਨਲੋਡ ਅਤੇ ਪ੍ਰੋਸੈਸ ਕਰਾਂਗੇ, ਅਤੇ ਫਿਰ ਇੱਕ ਵਰਡ ਕਲਾਉਡ ਬਣਾਵਾਂਗੇ, ਜਿਵੇਂ ਕਿ ਇਹ ਹੈ:

ਡਾਟਾ ਸਾਇੰਸ ਲਈ ਵਰਡ ਕਲਾਉਡ

ਕੋਡ ਨੂੰ ਪੜ੍ਹਨ ਲਈ notebook.ipynb 'ਤੇ ਜਾਓ। ਤੁਸੀਂ ਕੋਡ ਚਲਾ ਵੀ ਸਕਦੇ ਹੋ ਅਤੇ ਦੇਖ ਸਕਦੇ ਹੋ ਕਿ ਇਹ ਸਾਰੇ ਡਾਟਾ ਟ੍ਰਾਂਸਫਾਰਮੇਸ਼ਨ ਰੀਅਲ ਟਾਈਮ ਵਿੱਚ ਕਿਵੇਂ ਕਰਦਾ ਹੈ।

ਜੇ ਤੁਹਾਨੂੰ ਪਤਾ ਨਹੀਂ ਕਿ ਜੂਪਿਟਰ ਨੋਟਬੁੱਕ ਵਿੱਚ ਕੋਡ ਕਿਵੇਂ ਚਲਾਉਣਾ ਹੈ, ਤਾਂ ਇਸ ਲੇਖ ਨੂੰ ਦੇਖੋ।

ਪੋਸਟ-ਲੈਕਚਰ ਕਵਿਜ਼

ਅਸਾਈਨਮੈਂਟਸ

ਸ਼੍ਰੇਯ

ਇਹ ਪਾਠ ਦਿਮਿਤਰੀ ਸੋਸ਼ਨਿਕੋਵ ਵੱਲੋਂ ♥️ ਨਾਲ ਲਿਖਿਆ ਗਿਆ ਹੈ।


ਅਸਵੀਕਰਤੀ:
ਇਹ ਦਸਤਾਵੇਜ਼ AI ਅਨੁਵਾਦ ਸੇਵਾ Co-op Translator ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਅਨੁਵਾਦ ਕੀਤਾ ਗਿਆ ਹੈ। ਜਦੋਂ ਕਿ ਅਸੀਂ ਸਹੀ ਹੋਣ ਦੀ ਪੂਰੀ ਕੋਸ਼ਿਸ਼ ਕਰਦੇ ਹਾਂ, ਕਿਰਪਾ ਕਰਕੇ ਧਿਆਨ ਦਿਓ ਕਿ ਆਟੋਮੈਟਿਕ ਅਨੁਵਾਦਾਂ ਵਿੱਚ ਗਲਤੀਆਂ ਜਾਂ ਅਸੁਚੱਜੇਪਣ ਹੋ ਸਕਦੇ ਹਨ। ਮੂਲ ਦਸਤਾਵੇਜ਼ ਨੂੰ ਇਸਦੀ ਮੂਲ ਭਾਸ਼ਾ ਵਿੱਚ ਅਧਿਕਾਰਕ ਸਰੋਤ ਮੰਨਿਆ ਜਾਣਾ ਚਾਹੀਦਾ ਹੈ। ਮਹੱਤਵਪੂਰਨ ਜਾਣਕਾਰੀ ਲਈ, ਪੇਸ਼ੇਵਰ ਮਨੁੱਖੀ ਅਨੁਵਾਦ ਦੀ ਸਿਫਾਰਸ਼ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਅਸੀਂ ਇਸ ਅਨੁਵਾਦ ਦੀ ਵਰਤੋਂ ਤੋਂ ਪੈਦਾ ਹੋਣ ਵਾਲੇ ਕਿਸੇ ਵੀ ਗਲਤਫਹਿਮੀ ਜਾਂ ਗਲਤ ਵਿਆਖਿਆ ਲਈ ਜ਼ਿੰਮੇਵਾਰ ਨਹੀਂ ਹਾਂ।