You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Data-Science-For-Beginners/translations/lt/README.md

158 lines
19 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "7332da4946897c5885e9ca5bc24de96b",
"translation_date": "2025-09-06T11:17:06+00:00",
"source_file": "README.md",
"language_code": "lt"
}
-->
# Duomenų mokslas pradedantiesiems Mokymo programa
Azure Cloud Advocates komanda iš Microsoft džiaugiasi galėdama pasiūlyti 10 savaičių, 20 pamokų mokymo programą apie duomenų mokslą. Kiekviena pamoka apima prieš pamoką ir po pamokos pateikiamus testus, rašytines instrukcijas, kaip atlikti užduotis, sprendimus ir namų darbus. Mūsų projektinis mokymosi metodas leidžia mokytis kuriant tai įrodytas būdas įtvirtinti naujus įgūdžius.
**Nuoširdžiai dėkojame mūsų autoriams:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
**🙏 Ypatinga padėka 🙏 mūsų [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) autoriams, recenzentams ir turinio kūrėjams,** tarp jų Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200), [Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/), [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/), Yogendrasingh Pawar, [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/), [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
|![Sketchnote by @sketchthedocs https://sketchthedocs.dev](../../translated_images/00-Title.8af36cd35da1ac555b678627fbdc6e320c75f0100876ea41d30ea205d3b08d22.lt.png)|
|:---:|
| Duomenų mokslas pradedantiesiems - _Sketchnote by [@nitya](https://twitter.com/nitya)_ |
### 🌐 Daugiakalbė parama
#### Palaikoma per GitHub Action (Automatizuota ir visada atnaujinama)
[Prancūzų](../fr/README.md) | [Ispanų](../es/README.md) | [Vokiečių](../de/README.md) | [Rusų](../ru/README.md) | [Arabų](../ar/README.md) | [Persų (Farsi)](../fa/README.md) | [Urdu](../ur/README.md) | [Kinų (supaprastinta)](../zh/README.md) | [Kinų (tradicinė, Makao)](../mo/README.md) | [Kinų (tradicinė, Honkongas)](../hk/README.md) | [Kinų (tradicinė, Taivanas)](../tw/README.md) | [Japonų](../ja/README.md) | [Korėjiečių](../ko/README.md) | [Hindi](../hi/README.md) | [Bengalų](../bn/README.md) | [Marathi](../mr/README.md) | [Nepalų](../ne/README.md) | [Pandžabų (Gurmukhi)](../pa/README.md) | [Portugalų (Portugalija)](../pt/README.md) | [Portugalų (Brazilija)](../br/README.md) | [Italų](../it/README.md) | [Lenkų](../pl/README.md) | [Turkų](../tr/README.md) | [Graikų](../el/README.md) | [Tajų](../th/README.md) | [Švedų](../sv/README.md) | [Danų](../da/README.md) | [Norvegų](../no/README.md) | [Suomių](../fi/README.md) | [Olandų](../nl/README.md) | [Hebrajų](../he/README.md) | [Vietnamiečių](../vi/README.md) | [Indoneziečių](../id/README.md) | [Malajų](../ms/README.md) | [Tagalogų (Filipinų)](../tl/README.md) | [Svahilių](../sw/README.md) | [Vengrų](../hu/README.md) | [Čekų](../cs/README.md) | [Slovakų](../sk/README.md) | [Rumunų](../ro/README.md) | [Bulgarų](../bg/README.md) | [Serbų (kirilica)](../sr/README.md) | [Kroatų](../hr/README.md) | [Slovėnų](../sl/README.md) | [Ukrainiečių](../uk/README.md) | [Birmos (Mianmaras)](../my/README.md)
**Jei norite pridėti papildomų vertimų, palaikomos kalbos pateiktos [čia](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
#### Prisijunkite prie mūsų bendruomenės
[![Azure AI Discord](https://dcbadge.limes.pink/api/server/kzRShWzttr)](https://discord.gg/kzRShWzttr)
# Ar esate studentas?
Pradėkite nuo šių išteklių:
- [Studentų centras](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Šiame puslapyje rasite pradedančiųjų išteklius, studentų paketus ir net būdus, kaip gauti nemokamą sertifikato kuponą. Tai puslapis, kurį verta pažymėti ir reguliariai tikrinti, nes turinys keičiamas bent kartą per mėnesį.
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Prisijunkite prie pasaulinės studentų ambasadorių bendruomenės tai gali būti jūsų kelias į Microsoft.
# Pradžia
> **Mokytojai**: mes [įtraukėme keletą pasiūlymų](for-teachers.md), kaip naudoti šią mokymo programą. Laukiame jūsų atsiliepimų [mūsų diskusijų forume](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
> **[Studentai](https://aka.ms/student-page)**: norėdami naudoti šią mokymo programą savarankiškai, fork'inkite visą repozitoriją ir atlikite užduotis savarankiškai, pradėdami nuo prieš paskaitą pateikiamo testo. Tada perskaitykite paskaitą ir atlikite likusias veiklas. Stenkitės kurti projektus suprasdami pamokas, o ne kopijuodami sprendimų kodą; tačiau tas kodas yra prieinamas /solutions aplankuose kiekvienoje projektinėje pamokoje. Kita idėja sukurti mokymosi grupę su draugais ir kartu peržiūrėti turinį. Tolimesniam mokymuisi rekomenduojame [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
## Susipažinkite su komanda
[![Promo video](../../ds-for-beginners.gif)](https://youtu.be/8mzavjQSMM4 "Promo video")
**Gif sukūrė** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
> 🎥 Spustelėkite aukščiau esančią nuotrauką, kad pamatytumėte vaizdo įrašą apie projektą ir žmones, kurie jį sukūrė!
## Pedagogika
Kurdami šią mokymo programą pasirinkome du pedagoginius principus: užtikrinti, kad ji būtų paremta projektais, ir įtraukti dažnus testus. Pasibaigus šiai serijai, studentai bus išmokę pagrindinius duomenų mokslo principus, įskaitant etikos koncepcijas, duomenų paruošimą, įvairius darbo su duomenimis būdus, duomenų vizualizaciją, duomenų analizę, realaus pasaulio duomenų mokslo taikymo atvejus ir dar daugiau.
Be to, mažos rizikos testas prieš pamoką padeda studentui susitelkti į temos mokymąsi, o antrasis testas po pamokos užtikrina geresnį įsiminimą. Ši mokymo programa buvo sukurta taip, kad būtų lanksti ir smagi, ir ją galima naudoti visą arba dalimis. Projektai prasideda nuo paprastų ir tampa vis sudėtingesni per 10 savaičių ciklą.
> Rasite mūsų [Elgesio kodeksą](CODE_OF_CONDUCT.md), [Prisidėjimo](CONTRIBUTING.md), [Vertimo](TRANSLATIONS.md) gaires. Laukiame jūsų konstruktyvių atsiliepimų!
## Kiekviena pamoka apima:
- Pasirenkamą eskizą
- Pasirenkamą papildomą vaizdo įrašą
- Įžanginį testą prieš pamoką
- Rašytinę pamoką
- Projektinėms pamokoms žingsnis po žingsnio vadovus, kaip sukurti projektą
- Žinių patikrinimus
- Iššūkį
- Papildomą skaitymą
- Užduotį
- [Testą po pamokos](https://ff-quizzes.netlify.app/en/)
> **Pastaba apie testus**: Visi testai yra „Quiz-App“ aplanke, iš viso 40 testų, kiekviename po tris klausimus. Jie yra susieti su pamokomis, tačiau testų programėlę galima paleisti lokaliai arba įdiegti „Azure“; sekite instrukcijas „quiz-app“ aplanke. Testai palaipsniui lokalizuojami.
## Pamokos
|![ Eskizas @sketchthedocs https://sketchthedocs.dev](../../translated_images/00-Roadmap.4905d6567dff47532b9bfb8e0b8980fc6b0b1292eebb24181c1a9753b33bc0f5.lt.png)|
|:---:|
| Duomenų mokslas pradedantiesiems: Planas - _Eskizas [@nitya](https://twitter.com/nitya)_ |
| Pamokos numeris | Tema | Pamokų grupavimas | Mokymosi tikslai | Susieta pamoka | Autorius |
| :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
| 01 | Duomenų mokslo apibrėžimas | [Įvadas](1-Introduction/README.md) | Sužinokite pagrindines duomenų mokslo sąvokas ir kaip jis susijęs su dirbtiniu intelektu, mašininiu mokymusi ir didžiaisiais duomenimis. | [pamoka](1-Introduction/01-defining-data-science/README.md) [vaizdo įrašas](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 02 | Duomenų mokslo etika | [Įvadas](1-Introduction/README.md) | Duomenų etikos sąvokos, iššūkiai ir struktūros. | [pamoka](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 03 | Duomenų apibrėžimas | [Įvadas](1-Introduction/README.md) | Kaip klasifikuojami duomenys ir jų dažniausi šaltiniai. | [pamoka](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | Įvadas į statistiką ir tikimybes | [Įvadas](1-Introduction/README.md) | Matematiniai tikimybių ir statistikos metodai duomenims suprasti. | [pamoka](1-Introduction/04-stats-and-probability/README.md) [vaizdo įrašas](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | Darbas su reliaciniais duomenimis | [Darbas su duomenimis](2-Working-With-Data/README.md) | Įvadas į reliacinius duomenis ir pagrindai, kaip tyrinėti ir analizuoti reliacinius duomenis naudojant struktūrinės užklausos kalbą, dar žinomą kaip SQL (tariama „si-kvel“). | [pamoka](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | Darbas su NoSQL duomenimis | [Darbas su duomenimis](2-Working-With-Data/README.md) | Įvadas į nereliacinius duomenis, jų įvairius tipus ir pagrindai, kaip tyrinėti ir analizuoti dokumentų duomenų bazes. | [pamoka](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | Darbas su Python | [Darbas su duomenimis](2-Working-With-Data/README.md) | Python naudojimo pagrindai duomenų tyrinėjimui su tokiomis bibliotekomis kaip Pandas. Rekomenduojama turėti pagrindinį Python programavimo supratimą. | [pamoka](2-Working-With-Data/07-python/README.md) [vaizdo įrašas](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | Duomenų paruošimas | [Darbas su duomenimis](2-Working-With-Data/README.md) | Temos apie duomenų valymo ir transformavimo technikas, siekiant spręsti trūkstamų, netikslių ar neišsamių duomenų problemas. | [pamoka](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 09 | Kiekių vizualizavimas | [Duomenų vizualizacija](3-Data-Visualization/README.md) | Sužinokite, kaip naudoti Matplotlib vizualizuojant paukščių duomenis 🦆 | [pamoka](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 10 | Duomenų pasiskirstymo vizualizavimas | [Duomenų vizualizacija](3-Data-Visualization/README.md) | Vizualizuojant stebėjimus ir tendencijas intervale. | [pamoka](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 11 | Proporcijų vizualizavimas | [Duomenų vizualizacija](3-Data-Visualization/README.md) | Vizualizuojant diskrečius ir grupuotus procentus. | [pamoka](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | Ryšių vizualizavimas | [Duomenų vizualizacija](3-Data-Visualization/README.md) | Vizualizuojant ryšius ir koreliacijas tarp duomenų rinkinių ir jų kintamųjų. | [pamoka](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | Reikšmingos vizualizacijos | [Duomenų vizualizacija](3-Data-Visualization/README.md) | Technikos ir patarimai, kaip padaryti vizualizacijas vertingas efektyviam problemų sprendimui ir įžvalgoms. | [pamoka](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 14 | Įvadas į duomenų mokslo gyvavimo ciklą | [Gyvavimo ciklas](4-Data-Science-Lifecycle/README.md) | Įvadas į duomenų mokslo gyvavimo ciklą ir jo pirmąjį žingsnį duomenų gavimą ir išskyrimą. | [pamoka](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 15 | Analizavimas | [Gyvavimo ciklas](4-Data-Science-Lifecycle/README.md) | Ši duomenų mokslo gyvavimo ciklo fazė orientuota į duomenų analizės technikas. | [pamoka](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | Komunikacija | [Gyvavimo ciklas](4-Data-Science-Lifecycle/README.md) | Ši duomenų mokslo gyvavimo ciklo fazė orientuota į įžvalgų iš duomenų pateikimą taip, kad sprendimų priėmėjams būtų lengviau suprasti. | [pamoka](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 17 | Duomenų mokslas debesyje | [Debesų duomenys](5-Data-Science-In-Cloud/README.md) | Ši pamokų serija pristato duomenų mokslą debesyje ir jo privalumus. | [pamoka](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) ir [Maud](https://twitter.com/maudstweets) |
| 18 | Duomenų mokslas debesyje | [Debesų duomenys](5-Data-Science-In-Cloud/README.md) | Modelių mokymas naudojant mažo kodo įrankius. |[pamoka](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) ir [Maud](https://twitter.com/maudstweets) |
| 19 | Duomenų mokslas debesyje | [Debesų duomenys](5-Data-Science-In-Cloud/README.md) | Modelių diegimas naudojant „Azure Machine Learning Studio“. | [pamoka](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) ir [Maud](https://twitter.com/maudstweets) |
| 20 | Duomenų mokslas realiame pasaulyje | [Realiame pasaulyje](6-Data-Science-In-Wild/README.md) | Duomenų mokslo projektai realiame pasaulyje. | [pamoka](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
## GitHub Codespaces
Sekite šiuos žingsnius, kad atidarytumėte šį pavyzdį „Codespace“:
1. Spustelėkite „Code“ išskleidžiamąjį meniu ir pasirinkite „Open with Codespaces“ parinktį.
2. Pasirinkite + Naujas „Codespace“ apačioje.
Daugiau informacijos rasite [GitHub dokumentacijoje](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
## VSCode Remote - Containers
Sekite šiuos žingsnius, kad atidarytumėte šį repo konteineryje naudodami savo vietinį kompiuterį ir VSCode su VS Code Remote - Containers plėtiniu:
1. Jei tai jūsų pirmas kartas naudojant vystymo konteinerį, įsitikinkite, kad jūsų sistema atitinka reikalavimus (pvz., įdiegta „Docker“) [pradžios dokumentacijoje](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
Norėdami naudoti šį repo, galite jį atidaryti izoliuotame „Docker“ tūryje:
**Pastaba**: Viduje tai naudos „Remote-Containers: **Clone Repository in Container Volume...**“ komandą, kad nukopijuotų šaltinio kodą į „Docker“ tūrį, o ne vietinį failų sistemą. [Tūriai](https://docs.docker.com/storage/volumes/) yra rekomenduojamas mechanizmas konteinerio duomenims išsaugoti.
Arba atidarykite vietoje nukopijuotą ar atsisiųstą repo versiją:
- Nukopijuokite šį repo į savo vietinę failų sistemą.
- Paspauskite F1 ir pasirinkite **Remote-Containers: Open Folder in Container...** komandą.
- Pasirinkite nukopijuotą šio aplanko kopiją, palaukite, kol konteineris pradės veikti, ir išbandykite.
## Prieiga neprisijungus
Šią dokumentaciją galite paleisti neprisijungus naudodami [Docsify](https://docsify.js.org/#/). Nukopijuokite šį repo, [įdiekite Docsify](https://docsify.js.org/#/quickstart) savo vietiniame kompiuteryje, tada šio repo šakniniame aplanke įveskite `docsify serve`. Svetainė bus paleista 3000 prievade jūsų vietiniame kompiuteryje: `localhost:3000`.
> Pastaba, užrašų knygelės nebus rodomos per Docsify, todėl, kai reikia paleisti užrašų knygelę, tai darykite atskirai VS Code naudojant Python branduolį.
## Kiti mokymo planai
Mūsų komanda kuria kitus mokymo planus! Peržiūrėkite:
- [Generatyvus AI pradedantiesiems](https://aka.ms/genai-beginners)
- [Generatyvus AI pradedantiesiems .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [Generatyvus AI su JavaScript](https://github.com/microsoft/generative-ai-with-javascript)
- [Generatyvus AI su Java](https://aka.ms/genaijava)
- [AI pradedantiesiems](https://aka.ms/ai-beginners)
- [Duomenų mokslas pradedantiesiems](https://aka.ms/datascience-beginners)
- [Bash pradedantiesiems](https://github.com/microsoft/bash-for-beginners)
- [ML pradedantiesiems](https://aka.ms/ml-beginners)
- [Kibernetinis saugumas pradedantiesiems](https://github.com/microsoft/Security-101)
- [Web kūrimas pradedantiesiems](https://aka.ms/webdev-beginners)
- [IoT pradedantiesiems](https://aka.ms/iot-beginners)
- [Mašininis mokymasis pradedantiesiems](https://aka.ms/ml-beginners)
- [XR kūrimas pradedantiesiems](https://aka.ms/xr-dev-for-beginners)
- [GitHub Copilot įvaldymas AI poriniam programavimui](https://aka.ms/GitHubCopilotAI)
- [XR kūrimas pradedantiesiems](https://github.com/microsoft/xr-development-for-beginners)
- [GitHub Copilot įvaldymas C#/.NET programuotojams](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers)
- [Pasirinkite savo Copilot nuotykį](https://github.com/microsoft/CopilotAdventures)
---
**Atsakomybės apribojimas**:
Šis dokumentas buvo išverstas naudojant dirbtinio intelekto vertimo paslaugą [Co-op Translator](https://github.com/Azure/co-op-translator). Nors siekiame tikslumo, atkreipiame dėmesį, kad automatiniai vertimai gali turėti klaidų ar netikslumų. Originalus dokumentas jo gimtąja kalba turėtų būti laikomas autoritetingu šaltiniu. Kritinei informacijai rekomenduojama naudoti profesionalų žmogaus vertimą. Mes neprisiimame atsakomybės už nesusipratimus ar klaidingus aiškinimus, kylančius dėl šio vertimo naudojimo.