You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
323 lines
9.6 KiB
323 lines
9.6 KiB
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"# Data Science di Cloud: Cara \"Azure ML SDK\"\n",
|
|
"\n",
|
|
"## Pendahuluan\n",
|
|
"\n",
|
|
"Dalam notebook ini, kita akan belajar cara menggunakan Azure ML SDK untuk melatih, menerapkan, dan menggunakan model melalui Azure ML.\n",
|
|
"\n",
|
|
"Prasyarat:\n",
|
|
"1. Anda telah membuat workspace Azure ML.\n",
|
|
"2. Anda telah memuat [dataset Heart Failure](https://www.kaggle.com/andrewmvd/heart-failure-clinical-data) ke dalam Azure ML.\n",
|
|
"3. Anda telah mengunggah notebook ini ke Azure ML Studio.\n",
|
|
"\n",
|
|
"Langkah-langkah berikutnya adalah:\n",
|
|
"\n",
|
|
"1. Membuat sebuah Eksperimen di Workspace yang sudah ada.\n",
|
|
"2. Membuat sebuah kluster Compute.\n",
|
|
"3. Memuat dataset.\n",
|
|
"4. Mengonfigurasi AutoML menggunakan AutoMLConfig.\n",
|
|
"5. Menjalankan eksperimen AutoML.\n",
|
|
"6. Mengeksplorasi hasil dan mendapatkan model terbaik.\n",
|
|
"7. Mendaftarkan model terbaik.\n",
|
|
"8. Menerapkan model terbaik.\n",
|
|
"9. Menggunakan endpoint.\n",
|
|
"\n",
|
|
"## Impor khusus Azure Machine Learning SDK\n"
|
|
],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"source": [
|
|
"from azureml.core import Workspace, Experiment\n",
|
|
"from azureml.core.compute import AmlCompute\n",
|
|
"from azureml.train.automl import AutoMLConfig\n",
|
|
"from azureml.widgets import RunDetails\n",
|
|
"from azureml.core.model import InferenceConfig, Model\n",
|
|
"from azureml.core.webservice import AciWebservice"
|
|
],
|
|
"outputs": [],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"## Inisialisasi Workspace\n",
|
|
"Inisialisasi objek workspace dari konfigurasi yang tersimpan. Pastikan file konfigurasi tersedia di .\\config.json\n"
|
|
],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"source": [
|
|
"ws = Workspace.from_config()\n",
|
|
"print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep = '\\n')"
|
|
],
|
|
"outputs": [],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"## Membuat eksperimen Azure ML\n",
|
|
"\n",
|
|
"Mari kita buat eksperimen bernama 'aml-experiment' di workspace yang baru saja kita inisialisasi.\n"
|
|
],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"source": [
|
|
"experiment_name = 'aml-experiment'\n",
|
|
"experiment = Experiment(ws, experiment_name)\n",
|
|
"experiment"
|
|
],
|
|
"outputs": [],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"## Membuat Compute Cluster\n",
|
|
"Anda perlu membuat [compute target](https://docs.microsoft.com/azure/machine-learning/concept-azure-machine-learning-architecture#compute-target) untuk menjalankan AutoML Anda.\n"
|
|
],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"source": [
|
|
"aml_name = \"heart-f-cluster\"\n",
|
|
"try:\n",
|
|
" aml_compute = AmlCompute(ws, aml_name)\n",
|
|
" print('Found existing AML compute context.')\n",
|
|
"except:\n",
|
|
" print('Creating new AML compute context.')\n",
|
|
" aml_config = AmlCompute.provisioning_configuration(vm_size = \"Standard_D2_v2\", min_nodes=1, max_nodes=3)\n",
|
|
" aml_compute = AmlCompute.create(ws, name = aml_name, provisioning_configuration = aml_config)\n",
|
|
" aml_compute.wait_for_completion(show_output = True)\n",
|
|
"\n",
|
|
"cts = ws.compute_targets\n",
|
|
"compute_target = cts[aml_name]"
|
|
],
|
|
"outputs": [],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"## Data\n",
|
|
"Pastikan Anda telah mengunggah dataset ke Azure ML dan bahwa kunci memiliki nama yang sama dengan dataset.\n"
|
|
],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"source": [
|
|
"key = 'heart-failure-records'\n",
|
|
"dataset = ws.datasets[key]\n",
|
|
"df = dataset.to_pandas_dataframe()\n",
|
|
"df.describe()"
|
|
],
|
|
"outputs": [],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"## Konfigurasi AutoML\n"
|
|
],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"source": [
|
|
"automl_settings = {\n",
|
|
" \"experiment_timeout_minutes\": 20,\n",
|
|
" \"max_concurrent_iterations\": 3,\n",
|
|
" \"primary_metric\" : 'AUC_weighted'\n",
|
|
"}\n",
|
|
"\n",
|
|
"automl_config = AutoMLConfig(compute_target=compute_target,\n",
|
|
" task = \"classification\",\n",
|
|
" training_data=dataset,\n",
|
|
" label_column_name=\"DEATH_EVENT\",\n",
|
|
" enable_early_stopping= True,\n",
|
|
" featurization= 'auto',\n",
|
|
" debug_log = \"automl_errors.log\",\n",
|
|
" **automl_settings\n",
|
|
" )"
|
|
],
|
|
"outputs": [],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"## Jalankan AutoML\n"
|
|
],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"source": [
|
|
"remote_run = experiment.submit(automl_config)"
|
|
],
|
|
"outputs": [],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"source": [
|
|
"RunDetails(remote_run).show()"
|
|
],
|
|
"outputs": [],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"source": [
|
|
"best_run, fitted_model = remote_run.get_output()"
|
|
],
|
|
"outputs": [],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"source": [
|
|
"best_run.get_properties()"
|
|
],
|
|
"outputs": [],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"source": [
|
|
"model_name = best_run.properties['model_name']\n",
|
|
"script_file_name = 'inference/score.py'\n",
|
|
"best_run.download_file('outputs/scoring_file_v_1_0_0.py', 'inference/score.py')\n",
|
|
"description = \"aml heart failure project sdk\"\n",
|
|
"model = best_run.register_model(model_name = model_name,\n",
|
|
" description = description,\n",
|
|
" tags = None)"
|
|
],
|
|
"outputs": [],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"## Men-deploy Model Terbaik\n",
|
|
"\n",
|
|
"Jalankan kode berikut untuk men-deploy model terbaik. Anda dapat melihat status deployment di portal Azure ML. Langkah ini mungkin memerlukan beberapa menit.\n"
|
|
],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"source": [
|
|
"inference_config = InferenceConfig(entry_script=script_file_name, environment=best_run.get_environment())\n",
|
|
"\n",
|
|
"aciconfig = AciWebservice.deploy_configuration(cpu_cores = 1,\n",
|
|
" memory_gb = 1,\n",
|
|
" tags = {'type': \"automl-heart-failure-prediction\"},\n",
|
|
" description = 'Sample service for AutoML Heart Failure Prediction')\n",
|
|
"\n",
|
|
"aci_service_name = 'automl-hf-sdk'\n",
|
|
"aci_service = Model.deploy(ws, aci_service_name, [model], inference_config, aciconfig)\n",
|
|
"aci_service.wait_for_deployment(True)\n",
|
|
"print(aci_service.state)"
|
|
],
|
|
"outputs": [],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"## Menggunakan Endpoint\n",
|
|
"Anda dapat menambahkan input ke contoh input berikut.\n"
|
|
],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"source": [
|
|
"data = {\n",
|
|
" \"data\":\n",
|
|
" [\n",
|
|
" {\n",
|
|
" 'age': \"60\",\n",
|
|
" 'anaemia': \"false\",\n",
|
|
" 'creatinine_phosphokinase': \"500\",\n",
|
|
" 'diabetes': \"false\",\n",
|
|
" 'ejection_fraction': \"38\",\n",
|
|
" 'high_blood_pressure': \"false\",\n",
|
|
" 'platelets': \"260000\",\n",
|
|
" 'serum_creatinine': \"1.40\",\n",
|
|
" 'serum_sodium': \"137\",\n",
|
|
" 'sex': \"false\",\n",
|
|
" 'smoking': \"false\",\n",
|
|
" 'time': \"130\",\n",
|
|
" },\n",
|
|
" ],\n",
|
|
"}\n",
|
|
"\n",
|
|
"test_sample = str.encode(json.dumps(data))"
|
|
],
|
|
"outputs": [],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"source": [
|
|
"response = aci_service.run(input_data=test_sample)\n",
|
|
"response"
|
|
],
|
|
"outputs": [],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"\n---\n\n**Penafian**: \nDokumen ini telah diterjemahkan menggunakan layanan penerjemahan AI [Co-op Translator](https://github.com/Azure/co-op-translator). Meskipun kami berusaha untuk memberikan terjemahan yang akurat, harap diingat bahwa terjemahan otomatis mungkin mengandung kesalahan atau ketidakakuratan. Dokumen asli dalam bahasa aslinya harus dianggap sebagai sumber yang otoritatif. Untuk informasi yang bersifat kritis, disarankan menggunakan jasa penerjemahan profesional oleh manusia. Kami tidak bertanggung jawab atas kesalahpahaman atau penafsiran yang keliru yang timbul dari penggunaan terjemahan ini.\n"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"orig_nbformat": 4,
|
|
"language_info": {
|
|
"name": "python"
|
|
},
|
|
"coopTranslator": {
|
|
"original_hash": "af42669556d5dc19fc4cc3866f7d2597",
|
|
"translation_date": "2025-09-01T20:08:09+00:00",
|
|
"source_file": "5-Data-Science-In-Cloud/19-Azure/notebook.ipynb",
|
|
"language_code": "id"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
} |