You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "696a8474a01054281704cbfb09148949",
"translation_date": "2025-08-25T16:37:59+00:00",
"source_file": "1-Introduction/README.md",
"language_code": "zh"
}
-->
# 数据科学简介

> 图片由 <a href="https://unsplash.com/@dawson2406?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Stephen Dawson</a> 提供,来自 <a href="https://unsplash.com/s/photos/data?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Unsplash</a>
在这些课程中,您将了解数据科学的定义,并学习数据科学家必须考虑的伦理问题。您还将学习数据的定义,并对统计学和概率论有一些初步了解,这些是数据科学的核心学术领域。
### 主题
1. [定义数据科学 ](01-defining-data-science/README.md )
2. [数据科学伦理 ](02-ethics/README.md )
3. [定义数据 ](03-defining-data/README.md )
4. [统计与概率简介 ](04-stats-and-probability/README.md )
### 致谢
这些课程由 [Nitya Narasimhan ](https://twitter.com/nitya ) 和 [Dmitry Soshnikov ](https://twitter.com/shwars ) 倾注 ❤️ 编写完成。
** 免责声明**:
本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于重要信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。