5.3 KiB
Cloud တွင် ဒေတာသိပ္ပံ
ဓာတ်ပုံကို Jelleke Vanooteghem မှ Unsplash တွင် ရယူထားပါသည်။
အကြီးမားသော ဒေတာများနှင့်အတူ ဒေတာသိပ္ပံလုပ်ဆောင်ရာတွင် Cloud သည် အရေးပါသော အပြောင်းအလဲတစ်ခုဖြစ်နိုင်ပါသည်။ လာမည့် သုံးခုသော သင်ခန်းစာများတွင် Cloud ဆိုတာဘာလဲ၊ ဘာကြောင့် အထောက်အကူဖြစ်နိုင်သလဲဆိုတာကို ကြည့်ရှုမည်ဖြစ်သည်။ ထို့အပြင် နှလုံးရောဂါ dataset တစ်ခုကိုလည်း လေ့လာပြီး၊ တစ်ဦးတစ်ယောက်တွင် နှလုံးရောဂါဖြစ်နိုင်ခြေကို ခန့်မှန်းနိုင်ရန် မော်ဒယ်တစ်ခုကို တည်ဆောက်မည်ဖြစ်သည်။ Cloud ၏ အားသာချက်ကို အသုံးပြု၍ မော်ဒယ်ကို လေ့ကျင့်ခြင်း၊ တင်သွင်းခြင်းနှင့် အသုံးပြုခြင်းကို နည်းလမ်းနှစ်မျိုးဖြင့် ပြုလုပ်မည်ဖြစ်သည်။ နည်းလမ်းတစ်ခုမှာ Low code/No code ပုံစံဖြင့် အသုံးပြုသူအင်တာဖေ့စ်ကိုသာ အသုံးပြုခြင်းဖြစ်ပြီး၊ နောက်တစ်ခုမှာ Azure Machine Learning Software Developer Kit (Azure ML SDK) ကို အသုံးပြုခြင်းဖြစ်သည်။
ခေါင်းစဉ်များ
- Cloud ကို ဒေတာသိပ္ပံအတွက် ဘာကြောင့် အသုံးပြုသင့်သလဲ?
- Cloud တွင် ဒေတာသိပ္ပံ: "Low code/No code" နည်းလမ်း
- Cloud တွင် ဒေတာသိပ္ပံ: "Azure ML SDK" နည်းလမ်း
အားကျေးဇူးတင်စကား
ဤသင်ခန်းစာများကို ☁️ နှင့် 💕 ဖြင့် Maud Levy နှင့် Tiffany Souterre တို့မှ ရေးသားထားပါသည်။
နှလုံးရောဂါခန့်မှန်းမှု ပရောဂျက်အတွက် ဒေတာကို Kaggle တွင် Larxel မှ ရယူထားပြီး၊ Attribution 4.0 International (CC BY 4.0) လိုင်စင်အောက်တွင် ရရှိထားပါသည်။
အကြောင်းကြားချက်:
ဤစာရွက်စာတမ်းကို AI ဘာသာပြန်ဝန်ဆောင်မှု Co-op Translator ကို အသုံးပြု၍ ဘာသာပြန်ထားပါသည်။ ကျွန်ုပ်တို့သည် တိကျမှုအတွက် ကြိုးစားနေသော်လည်း၊ အလိုအလျောက် ဘာသာပြန်ခြင်းတွင် အမှားများ သို့မဟုတ် မတိကျမှုများ ပါရှိနိုင်သည်ကို သတိပြုပါ။ မူရင်းဘာသာစကားဖြင့် ရေးသားထားသော စာရွက်စာတမ်းကို အာဏာတရ အရင်းအမြစ်အဖြစ် ရှုလေ့လာသင့်ပါသည်။ အရေးကြီးသော အချက်အလက်များအတွက် လူ့ဘာသာပြန်ပညာရှင်များမှ ပရော်ဖက်ရှင်နယ် ဘာသာပြန်ခြင်းကို အကြံပြုပါသည်။ ဤဘာသာပြန်ကို အသုံးပြုခြင်းမှ ဖြစ်ပေါ်လာသော အလွဲအမှားများ သို့မဟုတ် အနားယူမှုများအတွက် ကျွန်ုပ်တို့သည် တာဝန်မယူပါ။