You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

204 lines
12 KiB

<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "af6a12015c6e250e500b570a9fa42593",
"translation_date": "2025-08-26T17:28:30+00:00",
"source_file": "3-Data-Visualization/11-visualization-proportions/README.md",
"language_code": "cs"
}
-->
# Vizualizace poměrů
|![ Sketchnote od [(@sketchthedocs)](https://sketchthedocs.dev) ](../../sketchnotes/11-Visualizing-Proportions.png)|
|:---:|
|Vizualizace poměrů - _Sketchnote od [@nitya](https://twitter.com/nitya)_ |
V této lekci použijete dataset zaměřený na přírodu k vizualizaci poměrů, například kolik různých druhů hub se nachází v daném datasetu o houbách. Pojďme prozkoumat tyto fascinující houby pomocí datasetu od Audubon, který obsahuje podrobnosti o 23 druzích lupenatých hub z rodů Agaricus a Lepiota. Budete experimentovat s chutnými vizualizacemi, jako jsou:
- Koláčové grafy 🥧
- Donutové grafy 🍩
- Waflové grafy 🧇
> 💡 Velmi zajímavý projekt [Charticulator](https://charticulator.com) od Microsoft Research nabízí bezplatné rozhraní pro vizualizaci dat pomocí drag and drop. V jednom z jejich tutoriálů také používají tento dataset o houbách! Můžete tedy prozkoumat data a zároveň se naučit používat tuto knihovnu: [Charticulator tutorial](https://charticulator.com/tutorials/tutorial4.html).
## [Kvíz před lekcí](https://purple-hill-04aebfb03.1.azurestaticapps.net/quiz/20)
## Poznejte své houby 🍄
Houby jsou velmi zajímavé. Importujme dataset, abychom je mohli studovat:
```python
import pandas as pd
import matplotlib.pyplot as plt
mushrooms = pd.read_csv('../../data/mushrooms.csv')
mushrooms.head()
```
Tabulka se vytiskne s některými skvělými daty pro analýzu:
| class | cap-shape | cap-surface | cap-color | bruises | odor | gill-attachment | gill-spacing | gill-size | gill-color | stalk-shape | stalk-root | stalk-surface-above-ring | stalk-surface-below-ring | stalk-color-above-ring | stalk-color-below-ring | veil-type | veil-color | ring-number | ring-type | spore-print-color | population | habitat |
| --------- | --------- | ----------- | --------- | ------- | ------- | --------------- | ------------ | --------- | ---------- | ----------- | ---------- | ------------------------ | ------------------------ | ---------------------- | ---------------------- | --------- | ---------- | ----------- | --------- | ----------------- | ---------- | ------- |
| Poisonous | Convex | Smooth | Brown | Bruises | Pungent | Free | Close | Narrow | Black | Enlarging | Equal | Smooth | Smooth | White | White | Partial | White | One | Pendant | Black | Scattered | Urban |
| Edible | Convex | Smooth | Yellow | Bruises | Almond | Free | Close | Broad | Black | Enlarging | Club | Smooth | Smooth | White | White | Partial | White | One | Pendant | Brown | Numerous | Grasses |
| Edible | Bell | Smooth | White | Bruises | Anise | Free | Close | Broad | Brown | Enlarging | Club | Smooth | Smooth | White | White | Partial | White | One | Pendant | Brown | Numerous | Meadows |
| Poisonous | Convex | Scaly | White | Bruises | Pungent | Free | Close | Narrow | Brown | Enlarging | Equal | Smooth | Smooth | White | White | Partial | White | One | Pendant | Black | Scattered | Urban |
Hned si všimnete, že všechna data jsou textová. Budete je muset převést, abyste je mohli použít v grafu. Většina dat je ve skutečnosti reprezentována jako objekt:
```python
print(mushrooms.select_dtypes(["object"]).columns)
```
Výstup je:
```output
Index(['class', 'cap-shape', 'cap-surface', 'cap-color', 'bruises', 'odor',
'gill-attachment', 'gill-spacing', 'gill-size', 'gill-color',
'stalk-shape', 'stalk-root', 'stalk-surface-above-ring',
'stalk-surface-below-ring', 'stalk-color-above-ring',
'stalk-color-below-ring', 'veil-type', 'veil-color', 'ring-number',
'ring-type', 'spore-print-color', 'population', 'habitat'],
dtype='object')
```
Vezměte tato data a převeďte sloupec 'class' na kategorii:
```python
cols = mushrooms.select_dtypes(["object"]).columns
mushrooms[cols] = mushrooms[cols].astype('category')
```
```python
edibleclass=mushrooms.groupby(['class']).count()
edibleclass
```
Nyní, pokud vytisknete data o houbách, uvidíte, že byla rozdělena do kategorií podle jedlých/jedovatých tříd:
| | cap-shape | cap-surface | cap-color | bruises | odor | gill-attachment | gill-spacing | gill-size | gill-color | stalk-shape | ... | stalk-surface-below-ring | stalk-color-above-ring | stalk-color-below-ring | veil-type | veil-color | ring-number | ring-type | spore-print-color | population | habitat |
| --------- | --------- | ----------- | --------- | ------- | ---- | --------------- | ------------ | --------- | ---------- | ----------- | --- | ------------------------ | ---------------------- | ---------------------- | --------- | ---------- | ----------- | --------- | ----------------- | ---------- | ------- |
| class | | | | | | | | | | | | | | | | | | | | | |
| Edible | 4208 | 4208 | 4208 | 4208 | 4208 | 4208 | 4208 | 4208 | 4208 | 4208 | ... | 4208 | 4208 | 4208 | 4208 | 4208 | 4208 | 4208 | 4208 | 4208 | 4208 |
| Poisonous | 3916 | 3916 | 3916 | 3916 | 3916 | 3916 | 3916 | 3916 | 3916 | 3916 | ... | 3916 | 3916 | 3916 | 3916 | 3916 | 3916 | 3916 | 3916 | 3916 | 3916 |
Pokud budete postupovat podle pořadí uvedeného v této tabulce při vytváření štítků kategorií, můžete vytvořit koláčový graf:
## Koláč!
```python
labels=['Edible','Poisonous']
plt.pie(edibleclass['population'],labels=labels,autopct='%.1f %%')
plt.title('Edible?')
plt.show()
```
Voila, koláčový graf zobrazující poměry těchto dat podle dvou tříd hub. Je velmi důležité správně nastavit pořadí štítků, zejména zde, takže si ověřte pořadí, ve kterém je pole štítků vytvořeno!
![koláčový graf](../../../../translated_images/pie1-wb.e201f2fcc335413143ce37650fb7f5f0bb21358e7823a327ed8644dfb84be9db.cs.png)
## Donuty!
Poněkud vizuálně zajímavější koláčový graf je donutový graf, což je koláčový graf s dírou uprostřed. Podívejme se na naše data pomocí této metody.
Podívejte se na různá stanoviště, kde houby rostou:
```python
habitat=mushrooms.groupby(['habitat']).count()
habitat
```
Zde seskupujete data podle stanoviště. Je jich uvedeno 7, takže je použijte jako štítky pro svůj donutový graf:
```python
labels=['Grasses','Leaves','Meadows','Paths','Urban','Waste','Wood']
plt.pie(habitat['class'], labels=labels,
autopct='%1.1f%%', pctdistance=0.85)
center_circle = plt.Circle((0, 0), 0.40, fc='white')
fig = plt.gcf()
fig.gca().add_artist(center_circle)
plt.title('Mushroom Habitats')
plt.show()
```
![donutový graf](../../../../translated_images/donut-wb.be3c12a22712302b5d10c40014d5389d4a1ae4412fe1655b3cf4af57b64f799a.cs.png)
Tento kód vykreslí graf a středový kruh, poté přidá tento středový kruh do grafu. Upravte šířku středového kruhu změnou hodnoty `0.40` na jinou.
Donutové grafy lze upravit několika způsoby, například změnou štítků. Štítky lze zejména zvýraznit pro lepší čitelnost. Více se dozvíte v [dokumentaci](https://matplotlib.org/stable/gallery/pie_and_polar_charts/pie_and_donut_labels.html?highlight=donut).
Nyní, když víte, jak seskupit data a zobrazit je jako koláč nebo donut, můžete prozkoumat další typy grafů. Vyzkoušejte waflový graf, což je jen jiný způsob zobrazení množství.
## Wafle!
Waflový graf je jiný způsob vizualizace množství jako 2D pole čtverců. Zkuste vizualizovat různé množství barev klobouků hub v tomto datasetu. K tomu je potřeba nainstalovat pomocnou knihovnu [PyWaffle](https://pypi.org/project/pywaffle/) a použít Matplotlib:
```python
pip install pywaffle
```
Vyberte segment svých dat pro seskupení:
```python
capcolor=mushrooms.groupby(['cap-color']).count()
capcolor
```
Vytvořte waflový graf vytvořením štítků a následným seskupením dat:
```python
import pandas as pd
import matplotlib.pyplot as plt
from pywaffle import Waffle
data ={'color': ['brown', 'buff', 'cinnamon', 'green', 'pink', 'purple', 'red', 'white', 'yellow'],
'amount': capcolor['class']
}
df = pd.DataFrame(data)
fig = plt.figure(
FigureClass = Waffle,
rows = 100,
values = df.amount,
labels = list(df.color),
figsize = (30,30),
colors=["brown", "tan", "maroon", "green", "pink", "purple", "red", "whitesmoke", "yellow"],
)
```
Pomocí waflového grafu můžete jasně vidět poměry barev klobouků v tomto datasetu hub. Zajímavé je, že existuje mnoho hub se zelenými klobouky!
![waflový graf](../../../../translated_images/waffle.5455dbae4ccf17d53bb40ff0a657ecef7b8aa967e27a19cc96325bd81598f65e.cs.png)
✅ PyWaffle podporuje ikony v grafech, které využívají jakoukoli ikonu dostupnou v [Font Awesome](https://fontawesome.com/). Udělejte několik experimentů a vytvořte ještě zajímavější waflový graf pomocí ikon místo čtverců.
V této lekci jste se naučili tři způsoby vizualizace poměrů. Nejprve je potřeba seskupit data do kategorií a poté rozhodnout, který způsob zobrazení dat je nejlepší - koláč, donut nebo wafle. Všechny jsou chutné a poskytují uživateli okamžitý přehled o datasetu.
## 🚀 Výzva
Zkuste znovu vytvořit tyto chutné grafy v [Charticulator](https://charticulator.com).
## [Kvíz po lekci](https://purple-hill-04aebfb03.1.azurestaticapps.net/quiz/21)
## Přehled & Samostudium
Někdy není zřejmé, kdy použít koláčový, donutový nebo waflový graf. Zde je několik článků, které si můžete přečíst na toto téma:
https://www.beautiful.ai/blog/battle-of-the-charts-pie-chart-vs-donut-chart
https://medium.com/@hypsypops/pie-chart-vs-donut-chart-showdown-in-the-ring-5d24fd86a9ce
https://www.mit.edu/~mbarker/formula1/f1help/11-ch-c6.htm
https://medium.datadriveninvestor.com/data-visualization-done-the-right-way-with-tableau-waffle-chart-fdf2a19be402
Proveďte výzkum a najděte více informací o tomto nelehkém rozhodování.
## Úkol
[Vyzkoušejte to v Excelu](assignment.md)
---
**Prohlášení**:
Tento dokument byl přeložen pomocí služby AI pro překlady [Co-op Translator](https://github.com/Azure/co-op-translator). Ačkoli se snažíme o přesnost, mějte prosím na paměti, že automatizované překlady mohou obsahovat chyby nebo nepřesnosti. Původní dokument v jeho původním jazyce by měl být považován za autoritativní zdroj. Pro důležité informace se doporučuje profesionální lidský překlad. Neodpovídáme za žádné nedorozumění nebo nesprávné interpretace vyplývající z použití tohoto překladu.