"The next step is to convert the data into the form suitable for processing. In our case, we have downloaded HTML source code from the page, and we need to convert it into plain text.\r\n",
"The next step is to convert the data into the form suitable for processing. In our case, we have downloaded HTML source code from the page, and we need to convert it into plain text.\r\n",
"\r\n",
"\r\n",
"There are many ways this can be done. We will use the simplest build-in [HTMLParser](https://docs.python.org/3/library/html.parser.html) object from Python. We need to subclass the `HTMLParser` class and define the code that will collect all text inside HTML tags, except `<script>` and `<style>` tags."
"There are many ways this can be done. We will use the simplest built-in [HTMLParser](https://docs.python.org/3/library/html.parser.html) object from Python. We need to subclass the `HTMLParser` class and define the code that will collect all text inside HTML tags, except `<script>` and `<style>` tags."
> تصویر از <ahref="https://unsplash.com/@dawson2406?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Stephen Dawson</a> در <ahref="https://unsplash.com/s/photos/data?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Unsplash</a>
شما در این بخش با تعریف علم داده و ملاحظات اخلاقی که یک دانشمند علوم داده باید در نظر داشته باشد آشنا خواهید شد. همچنین با تعریف داده و کمی هم با آمار و احتمالات که پایه و اساس علم داده است آشنا خواهید شد.
### سرفصل ها
1. [تعریف علم داده](../01-defining-data-science/README.md)
2. [اصول اخلاقی علم داده](../02-ethics/README.md)
3. [تعریف داده](../03-defining-data/README.md)
4. [مقدمه ای بر آمار و احتمال](../04-stats-and-probability/README.md)
### تهیه کنندگان
این درس ها با ❤️ توسط [Nitya Narasimhan](https://twitter.com/nitya) و [Dmitry Soshnikov](https://twitter.com/shwars) تهیه شده است.
🍯 US Honey Production 所使用的数据来自 Jessica Li 在 [Kaggle](https://www.kaggle.com/jessicali9530/honey-production) 上的项目. 实际上,该 [数据集](https://usda.library.cornell.edu/concern/publications/rn301137d) 来自 [美国农业部](https://www.nass.usda.gov/About_NASS/index.php).
@ -17,9 +17,11 @@ Microsoft मा Azure Cloud अधिवक्ताहरु एक १०-ह
> **विद्यार्थी**, यो पाठ्यक्रम आफ्नै शैलिमा प्रयोग गर्नका लागी यो Repo लाई fork गर्नुहोस् र एक पूर्व व्याख्यान प्रश्नोत्तरी संग शुरू गरी त्यसपछि गतिविधिहरु को बाकी पूरा लेक्चर पढी अभ्यास पूरा गर्नुहोस् । समाधान कोड प्रतिलिपि गर्नुको सट्टा पाठ बुझेर परियोजनाहरु बनाउन को लागी प्रयास गर्नुहोस्; जे होस् कि कोड प्रत्येक परियोजना उन्मुख पाठ मा /solution फोल्डरहरु मा उपलब्ध छ। अर्को विचार साथीहरु संग एक साथ सामग्री को माध्यम बाट जाने संग एक अध्ययन समूह गठन गर्न को लागी हुनेछ। थप अध्ययन को लागी, हामी [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-40229-cxa)सिफारिश गर्दछौं ।
> **विद्यार्थी**, यो पाठ्यक्रम आफ्नै शैलिमा प्रयोग गर्नका लागी यो Repo लाई fork गर्नुहोस् र एक पूर्व व्याख्यान प्रश्नोत्तरी संग शुरू गरी त्यसपछि गतिविधिहरु को बाकी पूरा लेक्चर पढी अभ्यास पूरा गर्नुहोस् । समाधान कोड प्रतिलिपि गर्नुको सट्टा पाठ बुझेर परियोजनाहरु बनाउन को लागी प्रयास गर्नुहोस्; जे होस् कि कोड प्रत्येक परियोजना उन्मुख पाठ मा /solution फोल्डरहरु मा उपलब्ध छ। अर्को विचार साथीहरु संग एक साथ सामग्री को माध्यम बाट जाने संग एक अध्ययन समूह गठन गर्न को लागी हुनेछ। थप अध्ययन को लागी, हामी [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-40229-cxa)सिफारिश गर्दछौं ।
| 0१ | डाटा विज्ञान को परिभाषा | [परिचय](1-Introduction/README.md) | डाटा विज्ञान को पछाडि आधारभूत अवधारणाहरु जान्नुहोस् र यो कसरी Artificial Intelligence, Machine Learning, र Big Data संग सम्बन्धित छ। | [पाठ](1-Introduction/01-defining-data-science/README.md) [भिडियो](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 0१ | डाटा विज्ञान को परिभाषा | [परिचय](1-Introduction/README.md) | डाटा विज्ञान को पछाडि आधारभूत अवधारणाहरु जान्नुहोस् र यो कसरी Artificial Intelligence, Machine Learning, र Big Data संग सम्बन्धित छ। | [पाठ](1-Introduction/01-defining-data-science/README.md) [भिडियो](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 0२ | डाटा विज्ञान नैतिकता | [परिचय](1-Introduction/README.md) | डाटा नैतिक अवधारणाहरु, चुनौतिहरु र फ्रेमवर्क | [पाठ](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 0२ | डाटा विज्ञान नैतिकता | [परिचय](1-Introduction/README.md) | डाटा नैतिक अवधारणाहरु, चुनौतिहरु र फ्रेमवर्क | [पाठ](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 0३ | डाटा परिभाषा | [परिचय](1-Introduction/README.md) | कसरी डाटा वर्गीकृत र यसको सामान्य स्रोत हो। | [पाठ](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 0३ | डाटा परिभाषा | [परिचय](1-Introduction/README.md) | कसरी डाटा वर्गीकृत र यसको सामान्य स्रोत हो। | [पाठ](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
@ -89,12 +90,12 @@ Microsoft मा Azure Cloud अधिवक्ताहरु एक १०-ह
## सहयोग चाहियो!
## सहयोग चाहियो!
यदि तपाइँ पाठ्यक्रम को सबै वा अंश अनुवाद गर्न चाहानुहुन्छ, कृपया हाम्रो [अनुवाद](TRANSLATIONS.md) गाइड को पालन गर्नुहोस्।
यदि तपाइँ पाठ्यक्रम को सबै वा अंश अनुवाद गर्न चाहानुहुन्छ, कृपया हाम्रो [अनुवाद](TRANSLATIONS.md) गाइड को पालन गर्नुहोस्।
## अन्य पाठ्यक्रम
## अन्य पाठ्यक्रम
हाम्रो टोली अन्य पाठ्यक्रम उत्पादन! यहाँ हेर्नुहोस :
हाम्रो टोली अन्य पाठ्यक्रम उत्पादन! यहाँ हेर्नुहोस :
- [शुरुआतीहरुको लागी Machine Learning](https://aka.ms/ml-beginners)
- [शुरुआतीहरुको लागी Machine Learning](https://aka.ms/ml-beginners)
- [शुरुआती को लागी IoT](https://aka.ms/iot-beginners)
- [शुरुआती को लागी IoT](https://aka.ms/iot-beginners)
- [शुरुआतीहरुको लागि Web Dev](https://aka.ms/webdev-beginners)
- [शुरुआतीहरुको लागि Web Dev](https://aka.ms/webdev-beginners)