과거에 스프레드 시트를 통해 정보를 저장한 경험이 있을 것입니다. 이는 행(rows)과 열(columns)을 가지고 있으며, 행(rows)에는 정보(혹은 데이터)를 나타내고 열(columns)에는 해당 정보(또는 메타데이터)를 정의합니다. 관계형 데이터베이스는 테이블의 행과 열의 핵심 원리를 기반으로 구축되며 여러 테이블에 정보를 분산시킬 수 있습니다. 이를 통해 더 복잡한 데이터를 다룰 수 있을 뿐만 아니라 중복을 방지하고, 데이터 탐색 방식에서 유연성을 가질 수 있습니다. 관계형 데이터베이스의 개념을 좀 더 살펴보겠습니다.
## [강의 전 퀴즈](https://red-water-0103e7a0f.azurestaticapps.net/quiz/8)
## 모든 것의 시작 : 테이블(table)
@ -125,7 +125,7 @@ WHERE country = 'New Zealand';
우리는 이전까지 단일 테이블에서 데이터를 검색했습니다. 이제 도시(**city**)와 강수량(**rainfall**)의 데이터를 하나로 통합해 보여주려 합니다. 이것은 데이터 *조인*을 통해서 할 수 있습니다. 데이터 조인은 두개의 다른 테이블의 열을 일치시킴으로써 효과적으로 이어줍니다.
예를들어, 강수량(**rainfall) 테이블의 **city_id** 열과 도시(**city**) 테이블의 **city_id** 열을 매칭할 수 있습니다. 조인을 통해 각 도시들과 그에 맞는 강수량을 매칭할 것입니다. 여러 조인의 종류 중에서 먼저 다룰 것은 *inner* 조인입니다. *inner* 조인은 테이블간의 행이 정확하게 일치하지 않으면 표시되지 않습니다. 위의 예시의 경우 모든 도시에 비가 내리므로, 모든 행이 표시될 것입니다.
예를들어, 강수량(**rainfall**) 테이블의 **city_id** 열과 도시(**city**) 테이블의 **city_id** 열을 매칭할 수 있습니다. 조인을 통해 각 도시들과 그에 맞는 강수량을 매칭할 것입니다. 여러 조인의 종류 중에서 먼저 다룰 것은 *inner* 조인입니다. *inner* 조인은 테이블간의 행이 정확하게 일치하지 않으면 표시되지 않습니다. 위의 예시의 경우 모든 도시에 비가 내리므로, 모든 행이 표시될 것입니다.