Added hindi translation 1-Introduction/04-stats-and-probability/translations/README.md

pull/360/head
Sachin 4 years ago
parent 59a7fa8614
commit bab244140b

@ -0,0 +1,268 @@
# सांख्यिकी और संभाव्यता का संक्षिप्त परिचय
|![ Sketchnote by [(@sketchthedocs)](https://sketchthedocs.dev) ](../../sketchnotes/04-Statistics-Probability.png)|
|:---:|
| सांख्यिकी और संभावना - _Sketchnote by [@nitya](https://twitter.com/nitya)_ |
सांख्यिकी और संभाव्यता सिद्धांत गणित के दो अत्यधिक संबंधित क्षेत्र हैं जो डेटा विज्ञान के लिए अत्यधिक प्रासंगिक हैं। गणित के गहन ज्ञान के बिना डेटा के साथ काम करना संभव है, लेकिन कम से कम कुछ बुनियादी अवधारणाओं को जानना अभी भी बेहतर है। यहां हम एक संक्षिप्त परिचय प्रस्तुत करेंगे जो आपको आरंभ करने में मदद करेगा।
[![Intro Video](images/video-prob-and-stats.png)](https://youtu.be/Z5Zy85g4Yjw)
## [Pre-lecture quiz](https://red-water-0103e7a0f.azurestaticapps.net/quiz/6)
## प्रायिकता और यादृच्छिक चर
**प्रायिकता** 0 और 1 के बीच की एक संख्या है जो यह व्यक्त करती है कि **ईवेंट** कितनी संभावित है। इसे कई सकारात्मक परिणामों के रूप में परिभाषित किया गया है (जो घटना की ओर ले जाते हैं), परिणामों की कुल संख्या से विभाजित, यह देखते हुए कि सभी परिणाम समान रूप से संभावित हैं। उदाहरण के लिए, जब हम एक पासे को उछालते हैं, तो हमें एक सम संख्या प्राप्त होने की प्रायिकता 3/6 = 0.5 होती है।
जब हम घटनाओं के बारे में बात करते हैं, तो हम **यादृच्छिक चर** का उपयोग करते हैं। उदाहरण के लिए, यादृच्छिक चर जो एक पासे को घुमाते समय प्राप्त संख्या का प्रतिनिधित्व करता है, 1 से 6 तक मान लेगा। 1 से 6 तक की संख्याओं के सेट को **नमूना स्थान** कहा जाता है। हम एक निश्चित मान लेने वाले यादृच्छिक चर की संभावना के बारे में बात कर सकते हैं, उदाहरण के लिए पी (एक्स = 3) = 1/6।
पिछले उदाहरण में यादृच्छिक चर को **असतत** कहा जाता है, क्योंकि इसमें एक गणनीय नमूना स्थान होता है, अर्थात अलग-अलग मान होते हैं जिन्हें गिना जा सकता है। ऐसे मामले हैं जब नमूना स्थान वास्तविक संख्याओं की एक श्रृंखला है, या वास्तविक संख्याओं का पूरा सेट है। ऐसे चरों को **सतत** कहा जाता है। एक अच्छा उदाहरण वह समय है जब बस आती है।
## प्रायिकता वितरण
असतत यादृच्छिक चर के मामले में, फ़ंक्शन P(X) द्वारा प्रत्येक घटना की प्रायिकता का वर्णन करना आसान है। नमूना स्थान *S* से प्रत्येक मान *s* के लिए यह 0 से 1 तक की संख्या देगा, जैसे कि सभी घटनाओं के लिए P(X=s) के सभी मानों का योग 1 होगा।
सबसे प्रसिद्ध असतत वितरण **समान वितरण** है, जिसमें N तत्वों का एक नमूना स्थान होता है, जिनमें से प्रत्येक के लिए 1/N की समान संभावना होती है।
एक सतत चर के संभाव्यता वितरण का वर्णन करना अधिक कठिन है, कुछ अंतराल [ए, बी], या वास्तविक संख्याओं के पूरे सेट से लिए गए मानों के साथ ℝ। बस आगमन समय के मामले पर विचार करें। वास्तव में, प्रत्येक सटीक आगमन समय *t* के लिए, ठीक उसी समय पर बस के आने की प्रायिकता 0 है!
> अब आप जानते हैं कि 0 प्रायिकता वाली घटनाएँ होती हैं, और बहुत बार! कम से कम हर बार जब बस आती है!
हम केवल दिए गए मानों के अंतराल में एक चर के गिरने की प्रायिकता के बारे में बात कर सकते हैं, उदाहरण के लिए। P(t<sub>1</sub>&le;X&lt;t<sub>2</sub>)। इस मामले में, प्रायिकता बंटन को **प्रायिकता घनत्व फलन** p(x) द्वारा वर्णित किया जाता है, जैसे कि
![P(t_1\le X<t_2)=\int_{t_1}^{t_2}p(x)dx](./images/probability-density.png)
एकसमान वितरण के एक सतत एनालॉग को **निरंतर वर्दी** कहा जाता है, जिसे एक सीमित अंतराल पर परिभाषित किया जाता है। एक संभावना है कि मान X लंबाई l के अंतराल में आता है l के समानुपाती है, और 1 तक बढ़ जाता है।
एक अन्य महत्वपूर्ण वितरण **सामान्य वितरण** है, जिसके बारे में हम नीचे विस्तार से बात करेंगे।
## माध्य, प्रसरण और मानक विचलन
मान लीजिए कि हम एक यादृच्छिक चर X के n नमूनों का एक क्रम बनाते हैं: x<sub>1</sub>, x<sub>2</sub>, ..., x<sub>n</sub>। हम पारंपरिक तरीके से अनुक्रम के **माध्य** (या **अंकगणित औसत**) मान को परिभाषित कर सकते हैं (x<sub>1</sub>+x<sub>2</sub>+x<sub >एन</उप>)/एन। जैसे-जैसे हम नमूने का आकार बढ़ाते हैं (अर्थात n&rr;&infin; के साथ सीमा लेते हैं), हम वितरण का माध्य (जिसे **अपेक्षा** भी कहते हैं) प्राप्त करेंगे। हम उम्मीद को **E**(x) से निरूपित करेंगे।
> यह प्रदर्शित किया जा सकता है कि मूल्यों के साथ किसी भी असतत वितरण के लिए {x<sub>1</sub>, x<sub>2</sub>, ..., x<sub>N</sub>} and corresponding probabilities p<sub>1</sub>, p<sub>2</sub>, ..., p<sub>N</sub>, the expectation would equal to E(X)=x<sub>1</sub>p<sub>1</sub>+x<sub>2</sub>p<sub>2</sub>+...+x<sub>N</sub>p<sub>N</sub>.
यह पहचानने के लिए कि मान कितनी दूर तक फैले हुए हैं, हम प्रसरण की गणना कर सकते हैं &sigma;<sup>2</sup> = &sum;(x<sub>i</sub> - &mu;)<sup>2</sup>/ एन, जहां & एमयू; अनुक्रम का माध्य है। मूल्य &सिग्मा; इसे **मानक विचलन** कहा जाता है, और &sigma;<sup>2</sup> को **विचरण** कहा जाता है।
## बहुलक, माध्यिका और चतुर्थक
कभी-कभी, माध्य डेटा के लिए "विशिष्ट" मान का पर्याप्त रूप से प्रतिनिधित्व नहीं करता है। उदाहरण के लिए, जब कुछ चरम मान पूरी तरह से सीमा से बाहर होते हैं, तो वे माध्य को प्रभावित कर सकते हैं। एक और अच्छा संकेत एक **माध्य** है, एक मान ऐसा है कि आधा डेटा बिंदु इससे कम है, और दूसरा आधा - अधिक है।
डेटा के वितरण को समझने में हमारी मदद करने के लिए, **चतुर्थक** के बारे में बात करना मददगार होगा:
* प्रथम चतुर्थक, या Q1, एक मान है, जैसे कि 25% डेटा इससे नीचे आता है
* तीसरा चतुर्थक, या Q3, एक मान है कि 75% डेटा इससे नीचे आता है
ग्राफिक रूप से हम **बॉक्स प्लॉट** नामक आरेख में माध्यिका और चतुर्थक के बीच संबंध का प्रतिनिधित्व कर सकते हैं:
<img src="images/boxplot_explanation.png" width="50%"/>
यहां हम **अंतर-चतुर्थक श्रेणी** IQR=Q3-Q1, और तथाकथित **आउटलेयर** - मानों की भी गणना करते हैं, जो सीमाओं के बाहर होते हैं [Q1-1.5*IQR,Q3+1.5*IQR]।
परिमित वितरण के लिए जिसमें कम संख्या में संभावित मान होते हैं, एक अच्छा "विशिष्ट" मान वह होता है जो सबसे अधिक बार प्रकट होता है, जिसे **मोड** कहा जाता है। इसे अक्सर रंग जैसे श्रेणीबद्ध डेटा पर लागू किया जाता है। एक ऐसी स्थिति पर विचार करें जब हमारे पास लोगों के दो समूह हों - कुछ जो लाल रंग को अधिक पसंद करते हैं, और अन्य जो नीले रंग को पसंद करते हैं। यदि हम रंगों को संख्याओं के आधार पर कोडित करते हैं, तो पसंदीदा रंग का माध्य मान नारंगी-हरे रंग के स्पेक्ट्रम में कहीं होगा, जो किसी भी समूह पर वास्तविक वरीयता को इंगित नहीं करता है। हालांकि, मोड या तो रंगों में से एक होगा, या दोनों रंग, यदि उनके लिए मतदान करने वाले लोगों की संख्या बराबर है (इस मामले में हम नमूने को **मल्टीमॉडल** कहते हैं)।
## वास्तविक दुनिया का डेटा
जब हम वास्तविक जीवन से डेटा का विश्लेषण करते हैं, तो वे अक्सर यादृच्छिक चर नहीं होते हैं, इस अर्थ में कि हम अज्ञात परिणाम के साथ प्रयोग नहीं करते हैं। उदाहरण के लिए, बेसबॉल खिलाड़ियों की एक टीम और उनके शरीर के डेटा, जैसे ऊंचाई, वजन और उम्र पर विचार करें। वे संख्याएँ बिल्कुल यादृच्छिक नहीं हैं, लेकिन हम अभी भी उन्हीं गणितीय अवधारणाओं को लागू कर सकते हैं। उदाहरण के लिए, लोगों के वजन के अनुक्रम को कुछ यादृच्छिक चर से निकाले गए मानों का अनुक्रम माना जा सकता है। [इस डेटासेट] (http://wiki.stat.ucla.edu) से लिए गए [मेजर लीग बेसबॉल](http://mlb.mlb.com/index.jsp) से वास्तविक बेसबॉल खिलाड़ियों के वज़न का क्रम नीचे दिया गया है /socr/index.php/SOCR_Data_MLB_HeightsWeights) (आपकी सुविधा के लिए, केवल पहले 20 मान दिखाए गए हैं):
```
[180.0, 215.0, 210.0, 210.0, 188.0, 176.0, 209.0, 200.0, 231.0, 180.0, 188.0, 180.0, 185.0, 160.0, 180.0, 185.0, 197.0, 189.0, 185.0, 219.0]
```
> **नोट**: इस डेटासेट के साथ काम करने का उदाहरण देखने के लिए, [साथ वाली नोटबुक](notebook.ipynb) पर एक नज़र डालें। इस पूरे पाठ में कई चुनौतियाँ भी हैं, और आप उस नोटबुक में कुछ कोड जोड़कर उन्हें पूरा कर सकते हैं। यदि आप सुनिश्चित नहीं हैं कि डेटा पर कैसे काम करना है, तो चिंता न करें - हम बाद में पायथन का उपयोग करके डेटा के साथ काम करने के लिए वापस आएंगे। यदि आप जुपिटर नोटबुक में कोड चलाना नहीं जानते हैं, तो [इस लेख] (https://soshnikov.com/education/how-to-execute-notebooks-from-github/) पर एक नज़र डालें।
हमारे डेटा के लिए माध्य, माध्यिका और चतुर्थक दिखाने वाला बॉक्स प्लॉट यहां दिया गया है:
![वेट बॉक्स प्लॉट](images/weight-boxplot.png)
चूंकि हमारे डेटा में अलग-अलग खिलाड़ी **भूमिकाएं** के बारे में जानकारी है, इसलिए हम भूमिका के आधार पर बॉक्स प्लॉट भी कर सकते हैं - यह हमें यह विचार प्राप्त करने की अनुमति देगा कि कैसे पैरामीटर मान भूमिकाओं में भिन्न होते हैं। इस बार हम ऊंचाई पर विचार करेंगे:
![भूमिका के अनुसार बॉक्स प्लॉट](images/boxplot_byrole.png)
यह आरेख बताता है कि, औसतन, पहले बेसमेन की ऊंचाई दूसरे बेसमेन की ऊंचाई से अधिक होती है। बाद में इस पाठ में हम सीखेंगे कि हम इस परिकल्पना का अधिक औपचारिक रूप से परीक्षण कैसे कर सकते हैं, और यह कैसे प्रदर्शित करें कि हमारा डेटा सांख्यिकीय रूप से महत्वपूर्ण है।
> वास्तविक दुनिया के डेटा के साथ काम करते समय, हम मानते हैं कि सभी डेटा बिंदु कुछ संभाव्यता वितरण से लिए गए नमूने हैं। यह धारणा हमें मशीन लर्निंग तकनीकों को लागू करने और कार्यशील भविष्य कहनेवाला मॉडल बनाने की अनुमति देती है।
यह देखने के लिए कि हमारे डेटा का वितरण क्या है, हम एक ग्राफ बना सकते हैं जिसे **हिस्टोग्राम** कहा जाता है। एक्स-अक्ष में कई अलग-अलग वज़न अंतराल (तथाकथित **बिन्स**) होंगे, और ऊर्ध्वाधर अक्ष दिखाएगा कि हमारा यादृच्छिक चर नमूना किसी दिए गए अंतराल के अंदर कितनी बार था।
![वास्तविक विश्व डेटा का हिस्टोग्राम](images/weight-histogram.png)
इस हिस्टोग्राम से आप देख सकते हैं कि सभी मान निश्चित औसत वजन के आसपास केंद्रित होते हैं, और हम उस वजन से जितना आगे जाते हैं - उस मान के कम वजन का सामना करना पड़ता है। यानी, यह बहुत ही असंभव है कि बेसबॉल खिलाड़ी का वजन औसत वजन से बहुत अलग होगा। भार में भिन्नता यह दर्शाती है कि भार किस हद तक माध्य से भिन्न होने की संभावना है।
> अगर हम बेसबॉल लीग से नहीं, बल्कि अन्य लोगों का वजन लेते हैं, तो वितरण अलग होने की संभावना है। हालाँकि, वितरण का आकार समान होगा, लेकिन माध्य और विचरण बदल जाएगा। इसलिए, यदि हम अपने मॉडल को बेसबॉल खिलाड़ियों पर प्रशिक्षित करते हैं, तो विश्वविद्यालय के छात्रों पर लागू होने पर यह गलत परिणाम देने की संभावना है, क्योंकि अंतर्निहित वितरण अलग है।
## सामान्य वितरण
वजन का वितरण जो हमने ऊपर देखा है वह बहुत विशिष्ट है, और वास्तविक दुनिया से कई माप एक ही प्रकार के वितरण का पालन करते हैं, लेकिन अलग-अलग माध्य और भिन्नता के साथ। इस वितरण को **सामान्य वितरण** कहा जाता है, और यह आंकड़ों में बहुत महत्वपूर्ण भूमिका निभाता है।
सामान्य वितरण का उपयोग करना संभावित बेसबॉल खिलाड़ियों के यादृच्छिक भार उत्पन्न करने का एक सही तरीका है। एक बार जब हम माध्य वजन `माध्य` और मानक विचलन `एसटीडी` जान लेते हैं, तो हम निम्नलिखित तरीके से 1000 वजन के नमूने तैयार कर सकते हैं:
```python
samples = np.random.normal(mean,std,1000)
```
यदि हम उत्पन्न नमूनों के हिस्टोग्राम की साजिश करते हैं तो हम ऊपर दिखाए गए चित्र के समान ही चित्र देखेंगे। और अगर हम नमूनों की संख्या और डिब्बे की संख्या में वृद्धि करते हैं, तो हम एक सामान्य वितरण की एक तस्वीर उत्पन्न कर सकते हैं जो आदर्श के अधिक करीब है:
![माध्य = 0 और एसटीडी.देव = 1 के साथ सामान्य वितरण](images/normal-histogram.png)
*माध्य = 0 और std.dev=1* के साथ सामान्य वितरण
## विश्वास अंतराल
जब हम बेसबॉल खिलाड़ियों के वजन के बारे में बात करते हैं, तो हम मानते हैं कि कुछ निश्चित **यादृच्छिक चर W** है जो सभी बेसबॉल खिलाड़ियों (तथाकथित **जनसंख्या**) के वजन के आदर्श संभाव्यता वितरण से मेल खाती है। वजन का हमारा क्रम सभी बेसबॉल खिलाड़ियों के एक उपसमुच्चय से मेल खाता है जिसे हम **नमूना** कहते हैं। एक दिलचस्प सवाल यह है कि क्या हम डब्ल्यू के वितरण के मापदंडों को जान सकते हैं, यानी जनसंख्या का माध्य और विचरण?
सबसे आसान उत्तर हमारे नमूने के माध्य और विचरण की गणना करना होगा। हालाँकि, ऐसा हो सकता है कि हमारा यादृच्छिक नमूना पूर्ण जनसंख्या का सटीक रूप से प्रतिनिधित्व नहीं करता है। इस प्रकार **कॉन्फिडेंस इंटरवल** के बारे में बात करना समझ में आता है।
> **विश्वास अंतराल** हमारे नमूने को देखते हुए जनसंख्या के वास्तविक माध्य का अनुमान है, जो एक निश्चित प्रायिकता (या **विश्वास का स्तर**) सटीक है।
मान लीजिए हमारे पास हमारे वितरण से एक नमूना X<sub>1</sub>, ..., X<sub>n</sub> है। हर बार जब हम अपने वितरण से एक नमूना लेते हैं, तो हम अलग-अलग माध्य मान के साथ समाप्त होते हैं। इस प्रकार &mu; एक यादृच्छिक चर माना जा सकता है। एक **विश्वास अंतराल** विश्वास के साथ p मानों की एक जोड़ी है (L<sub>p</sub>,R<sub>p</sub>), जैसे कि **P**(L<sub>p </sub>&leq;&mu;&leq;R<sub>p</sub>) = p, यानी अंतराल के भीतर मापे गए माध्य मान के गिरने की प्रायिकता p के बराबर होती है।
यह विस्तार से चर्चा करने के लिए हमारे संक्षिप्त परिचय से परे है कि उन आत्मविश्वास अंतराल की गणना कैसे की जाती है। कुछ और विवरण [विकिपीडिया पर](https://en.wikipedia.org/wiki/Confidence_interval) देखे जा सकते हैं। संक्षेप में, हम जनसंख्या के वास्तविक माध्य के सापेक्ष परिकलित नमूना माध्य के वितरण को परिभाषित करते हैं, जिसे **छात्र वितरण** कहा जाता है।
> **दिलचस्प तथ्य**: छात्र वितरण का नाम गणितज्ञ विलियम सीली गॉसेट के नाम पर रखा गया है, जिन्होंने छद्म नाम "स्टूडेंट" के तहत अपना पेपर प्रकाशित किया था। उन्होंने गिनीज शराब की भठ्ठी में काम किया, और, एक संस्करण के अनुसार, उनके नियोक्ता नहीं चाहते थे कि आम जनता को पता चले कि वे कच्चे माल की गुणवत्ता निर्धारित करने के लिए सांख्यिकीय परीक्षणों का उपयोग कर रहे थे।
If we want to estimate the mean &mu; of our population with confidence p, we need to take *(1-p)/2-th percentile* of a Student distribution A, which can either be taken from tables, or computer using some built-in functions of statistical software (eg. Python, R, etc.). Then the interval for &mu; would be given by X&pm;A*D/&radic;n, where X is the obtained mean of the sample, D is the standard deviation.
> **Note**: We also omit the discussion of an important concept of [degrees of freedom](https://en.wikipedia.org/wiki/Degrees_of_freedom_(statistics)), which is important in relation to Student distribution. You can refer to more complete books on statistics to understand this concept deeper.
An example of calculating confidence interval for weights and heights is given in the [accompanying notebooks](notebook.ipynb).
| p | Weight mean |
|-----|-----------|
| 0.85 | 201.73±0.94 |
| 0.90 | 201.73±1.08 |
| 0.95 | 201.73±1.28 |
ध्यान दें कि आत्मविश्वास की संभावना जितनी अधिक होगी, विश्वास अंतराल उतना ही व्यापक होगा।
## परिकल्पना परीक्षण
हमारे बेसबॉल खिलाड़ियों के डेटासेट में, अलग-अलग खिलाड़ी भूमिकाएँ होती हैं, जिन्हें नीचे संक्षेप में प्रस्तुत किया जा सकता है (इस तालिका की गणना कैसे की जा सकती है, यह देखने के लिए [साथ वाली नोटबुक](notebook.ipynb) देखें):
| Role | Height | Weight | Count |
|------|--------|--------|-------|
| Catcher | 72.723684 | 204.328947 | 76 |
| Designated_Hitter | 74.222222 | 220.888889 | 18 |
| First_Baseman | 74.000000 | 213.109091 | 55 |
| Outfielder | 73.010309 | 199.113402 | 194 |
| Relief_Pitcher | 74.374603 | 203.517460 | 315 |
| Second_Baseman | 71.362069 | 184.344828 | 58 |
| Shortstop | 71.903846 | 182.923077 | 52 |
| Starting_Pitcher | 74.719457 | 205.163636 | 221 |
| Third_Baseman | 73.044444 | 200.955556 | 45 |
हम देख सकते हैं कि पहले बेसमेन की औसत ऊंचाई दूसरे बेसमेन की तुलना में अधिक है। इस प्रकार, हम यह निष्कर्ष निकालने के लिए ललचा सकते हैं कि **पहले बेसमेन दूसरे बेसमेन से अधिक हैं**।
> इस कथन को **एक परिकल्पना** कहा जाता है, क्योंकि हम नहीं जानते कि तथ्य वास्तव में सत्य है या नहीं।
हालांकि, यह हमेशा स्पष्ट नहीं होता है कि क्या हम यह निष्कर्ष निकाल सकते हैं। ऊपर की चर्चा से हम जानते हैं कि प्रत्येक माध्य का एक संबद्ध विश्वास अंतराल होता है, और इस प्रकार यह अंतर केवल एक सांख्यिकीय त्रुटि हो सकता है। हमें अपनी परिकल्पना का परीक्षण करने के लिए कुछ और औपचारिक तरीके की आवश्यकता है।
आइए पहले और दूसरे बेसमेन की ऊंचाई के लिए अलग-अलग आत्मविश्वास अंतराल की गणना करें:
| Confidence | First Basemen | Second Basemen |
|------------|---------------|----------------|
| 0.85 | 73.62..74.38 | 71.04..71.69 |
| 0.90 | 73.56..74.44 | 70.99..71.73 |
| 0.95 | 73.47..74.53 | 70.92..71.81 |
हम देख सकते हैं कि बिना किसी विश्वास के अंतराल ओवरलैप हो जाते हैं। इससे हमारी परिकल्पना सिद्ध होती है कि पहले बेसमेन दूसरे बेसमेन से ऊंचे होते हैं।
अधिक औपचारिक रूप से, हम जिस समस्या को हल कर रहे हैं वह यह देखना है कि क्या **दो संभाव्यता वितरण समान हैं**, या कम से कम समान पैरामीटर हैं। वितरण के आधार पर, हमें उसके लिए विभिन्न परीक्षणों का उपयोग करने की आवश्यकता है। यदि हम जानते हैं कि हमारे वितरण सामान्य हैं, तो हम **[स्टूडेंट टी-टेस्ट](https://en.wikipedia.org/wiki/Student%27s_t-test)** लागू कर सकते हैं।
स्टूडेंट टी-टेस्ट में, हम तथाकथित **टी-वैल्यू** की गणना करते हैं, जो भिन्नता को ध्यान में रखते हुए, साधनों के बीच अंतर को इंगित करता है। यह प्रदर्शित किया जाता है कि टी-मान **छात्र वितरण** का अनुसरण करता है, जो हमें दिए गए आत्मविश्वास स्तर **p** के लिए थ्रेशोल्ड मान प्राप्त करने की अनुमति देता है (इसकी गणना की जा सकती है, या संख्यात्मक तालिकाओं में देखा जा सकता है)। फिर हम परिकल्पना को स्वीकृत या अस्वीकार करने के लिए टी-मान की तुलना इस सीमा से करते हैं।
पायथन में, हम **SciPy** पैकेज का उपयोग कर सकते हैं, जिसमें `ttest_ind` फ़ंक्शन शामिल है (कई अन्य उपयोगी सांख्यिकीय कार्यों के अलावा!)। यह हमारे लिए टी-वैल्यू की गणना करता है, और कॉन्फिडेंस पी-वैल्यू की रिवर्स लुकअप भी करता है, ताकि हम निष्कर्ष निकालने के लिए कॉन्फिडेंस को देख सकें।
उदाहरण के लिए, पहले और दूसरे बेसमेन की ऊंचाई के बीच हमारी तुलना हमें निम्नलिखित परिणाम देती है:
```python
from scipy.stats import ttest_ind
tval, pval = ttest_ind(df.loc[df['Role']=='First_Baseman',['Height']], df.loc[df['Role']=='Designated_Hitter',['Height']],equal_var=False)
print(f"T-value = {tval[0]:.2f}\nP-value: {pval[0]}")
```
```
T-value = 7.65
P-value: 9.137321189738925e-12
```
हमारे मामले में, पी-वैल्यू बहुत कम है, जिसका अर्थ है कि इस बात का समर्थन करने वाले मजबूत सबूत हैं कि पहले बेसमेन लम्बे होते हैं।
अन्य विभिन्न प्रकार की परिकल्पनाएँ भी हैं जिनका हम परीक्षण करना चाहते हैं, उदाहरण के लिए:
* यह साबित करने के लिए कि दिया गया नमूना कुछ वितरण का अनुसरण करता है। हमारे मामले में हमने मान लिया है कि ऊंचाई सामान्य रूप से वितरित की जाती है, लेकिन इसके लिए औपचारिक सांख्यिकीय सत्यापन की आवश्यकता होती है।
* यह सिद्ध करने के लिए कि नमूने का माध्य मान कुछ पूर्वनिर्धारित मान से मेल खाता है
* कई नमूनों के साधनों की तुलना करना (उदाहरण के लिए विभिन्न आयु समूहों में खुशी के स्तर में क्या अंतर है)
## बड़ी संख्या का नियम और केंद्रीय सीमा प्रमेय
सामान्य वितरण के इतना महत्वपूर्ण होने का एक कारण तथाकथित **केंद्रीय सीमा प्रमेय** है। मान लीजिए कि हमारे पास स्वतंत्र N मानों X<sub>1</sub>, ..., X<sub>N</sub> का एक बड़ा नमूना है, जिसे माध्य &mu; और विचरण &सिग्मा;<sup>2</sup>. फिर, पर्याप्त रूप से बड़े N के लिए (दूसरे शब्दों में, जब N&rarr;&infin;), माध्य &Sigma;<sub>i</sub>X<sub>i</sub> को सामान्य रूप से माध्य &mu के साथ वितरित किया जाएगा; और विचरण &sigma;<sup>2</sup>/N.
> केंद्रीय सीमा प्रमेय की व्याख्या करने का एक अन्य तरीका यह कहना है कि वितरण की परवाह किए बिना, जब आप किसी भी यादृच्छिक चर मानों के योग के माध्य की गणना करते हैं तो आप सामान्य वितरण के साथ समाप्त होते हैं।
केंद्रीय सीमा प्रमेय से यह भी पता चलता है कि, जब N&rar;&infin;, नमूने के माध्य की प्रायिकता &mu; बन जाता है 1. इसे **बड़ी संख्या का नियम** कहते हैं।
## सहप्रसरण और सहसंबंध
डेटा साइंस द्वारा की जाने वाली चीजों में से एक डेटा के बीच संबंध ढूंढ रहा है। हम कहते हैं कि दो अनुक्रम **सहसम्बन्ध** तब होते हैं जब वे एक ही समय में समान व्यवहार प्रदर्शित करते हैं, अर्थात वे या तो एक साथ उठते/गिरते हैं, या एक क्रम ऊपर उठता है जब दूसरा गिरता है और इसके विपरीत। दूसरे शब्दों में, दो अनुक्रमों के बीच कुछ संबंध प्रतीत होता है।
> सहसंबंध आवश्यक रूप से दो अनुक्रमों के बीच कारण संबंध को इंगित नहीं करता है; कभी-कभी दोनों चर किसी बाहरी कारण पर निर्भर हो सकते हैं, या यह विशुद्ध रूप से संयोग से दो अनुक्रम सहसंबद्ध हो सकते हैं। हालांकि, मजबूत गणितीय सहसंबंध एक अच्छा संकेत है कि दो चर किसी न किसी तरह से जुड़े हुए हैं।
गणितीय रूप से, मुख्य अवधारणा जो दो यादृच्छिक चर के बीच संबंध दिखाती है, वह है **सहप्रसरण**, जिसकी गणना इस प्रकार की जाती है: Cov(X,Y) = **E**\[(X-**E**(X) ))(वाई-**ई**(वाई))\]। हम दोनों चरों के विचलन की गणना उनके माध्य मानों से करते हैं, और फिर उन विचलनों के गुणनफल की गणना करते हैं। यदि दोनों चर एक साथ विचलित होते हैं, तो उत्पाद हमेशा एक सकारात्मक मूल्य होगा, जो कि सकारात्मक सहप्रसरण को जोड़ देगा। यदि दोनों चर आउट-ऑफ-सिंक विचलित हो जाते हैं (अर्थात एक औसत से नीचे गिर जाता है जब दूसरा औसत से ऊपर उठता है), तो हमें हमेशा ऋणात्मक संख्याएँ मिलेंगी, जो कि ऋणात्मक सहप्रसरण को जोड़ देंगी। यदि विचलन निर्भर नहीं हैं, तो वे लगभग शून्य तक जोड़ देंगे।
सहप्रसरण का निरपेक्ष मान हमें यह नहीं बताता कि सहसंबंध कितना बड़ा है, क्योंकि यह वास्तविक मूल्यों के परिमाण पर निर्भर करता है। इसे सामान्य करने के लिए, हम **सहसंबंध** प्राप्त करने के लिए, दोनों चरों के मानक विचलन द्वारा सहप्रसरण को विभाजित कर सकते हैं। अच्छी बात यह है कि सहसंबंध हमेशा [-1,1] की सीमा में होता है, जहां 1 मूल्यों के बीच मजबूत सकारात्मक सहसंबंध को इंगित करता है, -1 - मजबूत नकारात्मक सहसंबंध, और 0 - बिल्कुल भी कोई संबंध नहीं (चर स्वतंत्र हैं)।
**उदाहरण**: हम ऊपर बताए गए डेटासेट से बेसबॉल खिलाड़ियों के वज़न और ऊंचाई के बीच सहसंबंध की गणना कर सकते हैं:
```python
print(np.corrcoef(weights,heights))
```
As a result, we get **correlation matrix** like this one:
```
array([[1. , 0.52959196],
[0.52959196, 1. ]])
```
> सहसंबंध मैट्रिक्स C की गणना किसी भी इनपुट अनुक्रम S<sub>1</sub>, ..., S<sub>n</sub> के लिए की जा सकती है। C<sub>ij</sub> का मान S<sub>i</sub> और S<sub>j</sub> के बीच सहसंबंध है, और विकर्ण तत्व हमेशा 1 होते हैं (जो कि स्व-सहसंबंध भी है एस<उप>मैं</sub>)।
हमारे मामले में, मान 0.53 इंगित करता है कि किसी व्यक्ति के वजन और ऊंचाई के बीच कुछ संबंध है। हम रिश्ते को देखने के लिए दूसरे के खिलाफ एक मूल्य का स्कैटर प्लॉट भी बना सकते हैं:
![वजन और ऊंचाई के बीच संबंध](images/weight-height-relationship.png)
> सहसंबंध और सहप्रसरण के अधिक उदाहरण [साथ वाली नोटबुक](notebook.ipynb) में पाए जा सकते हैं।
## निष्कर्ष
इस भाग में हमने सीखा है:
* डेटा के बुनियादी सांख्यिकीय गुण, जैसे माध्य, विचरण, मोड और चतुर्थक
* सामान्य वितरण सहित यादृच्छिक चर के विभिन्न वितरण
* विभिन्न गुणों के बीच सहसंबंध कैसे खोजें
* कुछ परिकल्पनाओं को सिद्ध करने के लिए गणित और सांख्यिकी के ध्वनि उपकरण का उपयोग कैसे करें,
* यादृच्छिक चर दिए गए डेटा नमूने के लिए विश्वास अंतराल की गणना कैसे करें
हालांकि यह निश्चित रूप से उन विषयों की संपूर्ण सूची नहीं है जो संभाव्यता और आंकड़ों के भीतर मौजूद हैं, यह आपको इस पाठ्यक्रम में एक अच्छी शुरुआत देने के लिए पर्याप्त होना चाहिए।
## चुनौती
अन्य परिकल्पना का परीक्षण करने के लिए नोटबुक में नमूना कोड का उपयोग करें जो:
1. पहले बेसमेन दूसरे बेसमेन से बड़े होते हैं
2. पहले बेसमेन तीसरे बेसमेन से लम्बे होते हैं
3. शॉर्टस्टॉप दूसरे बेसमेन से लम्बे होते हैं
## [व्याख्यान के बाद प्रश्नोत्तरी](https://red-water-0103e7a0f.azurestaticapps.net/quiz/7)
## समीक्षा और आत्म अध्ययन
संभाव्यता और सांख्यिकी इतना व्यापक विषय है कि यह अपने पाठ्यक्रम के योग्य है। यदि आप सिद्धांत में गहराई तक जाने में रुचि रखते हैं, तो आप निम्नलिखित में से कुछ पुस्तकों को पढ़ना जारी रख सकते हैं:
1. [Carlos Fernandez-Granda](https://cims.nyu.edu/~cfgranda/) from New York University has great lecture notes [Probability and Statistics for Data Science](https://cims.nyu.edu/~cfgranda/pages/stuff/probability_stats_for_DS.pdf) (available online)
1. [Peter and Andrew Bruce. Practical Statistics for Data Scientists.](https://www.oreilly.com/library/view/practical-statistics-for/9781491952955/) [[sample code in R](https://github.com/andrewgbruce/statistics-for-data-scientists)].
1. [James D. Miller. Statistics for Data Science](https://www.packtpub.com/product/statistics-for-data-science/9781788290678) [[sample code in R](https://github.com/PacktPublishing/Statistics-for-Data-Science)]
## कार्यभार
[लघु मधुमेह अध्ययन] (असाइनमेंट.एमडी)
## क्रेडिट
यह पाठ ♥️ के साथ [दिमित्री सोशनिकोव](http://soshnikov.com) द्वारा लिखा गया है।
Loading…
Cancel
Save