commit
b90a63cd47
@ -0,0 +1,18 @@
|
||||
# 데이터 과학의 입문
|
||||
|
||||

|
||||
> 이미지 출처: <a href="https://unsplash.com/@dawson2406?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Stephen Dawson</a> on <a href="https://unsplash.com/s/photos/data?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Unsplash</a>
|
||||
|
||||
이 레슨에서, 당신은 어떻게 데이터 과학이 정의되었는지 발견하고 데이터 과학자에게 있어서 필히 고려해야만 하는 윤리적 사항들에 대하여 배울 것입니다. 당신은 또한 데이터가 어떻게 정의되었는지와, 데이터 과학 학습 영역에서의 중심인 약간의 통계와 확률에 대하여 배울 것입니다.
|
||||
|
||||
|
||||
### 토픽
|
||||
|
||||
1. [데이터 과학 정의하기](01-defining-data-science/README.md)
|
||||
2. [데이터 과학에서의 윤리](02-ethics/README.md)
|
||||
3. [데이터 정의하기](03-defining-data/README.md)
|
||||
4. [통계와 확률에 대한 소개](04-stats-and-probability/README.md)
|
||||
|
||||
### 출처
|
||||
|
||||
이 강의들은 [Nitya Narasimhan](https://twitter.com/nitya) 과 [Dmitry Soshnikov](https://twitter.com/shwars)에 의해 쓰여졌음❤️
|
@ -1,17 +0,0 @@
|
||||
# Introduction to Data Science
|
||||
|
||||

|
||||
> Photo by <a href="https://unsplash.com/@dawson2406?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Stephen Dawson</a> on <a href="https://unsplash.com/s/photos/data?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Unsplash</a>
|
||||
|
||||
In these lessons, you will discover how Data Science is defined and learn about ethical considerations that must be considered by a data scientist. You will also learn how data is defined and learn a bit about statistics and probability, the core academic domains of Data Science.
|
||||
|
||||
### Topics
|
||||
|
||||
1. [Defining Data Science](01-defining-data-science/README.md)
|
||||
2. [Data Science Ethics](02-ethics/README.md)
|
||||
3. [Defining Data](03-defining-data/README.md)
|
||||
4. [Introduction to Statistics and Probability](04-stats-and-probability/README.md)
|
||||
|
||||
### Credits
|
||||
|
||||
These lessons were written with ❤️ by [Nitya Narasimhan](https://twitter.com/nitya) and [Dmitry Soshnikov](https://twitter.com/shwars).
|
@ -0,0 +1,28 @@
|
||||
# 可视化
|
||||
|
||||

|
||||
> 拍摄者 <a href="https://unsplash.com/@jenna2980?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Jenna Lee</a> 上传于 <a href="https://unsplash.com/s/photos/bees-in-a-meadow?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Unsplash</a>
|
||||
|
||||
数据可视化是数据科学家最重要的任务之一。一张图片有时胜过千言万语,同时可视化还可以帮助你指出你的数据中包含的各种有趣的特征,例如峰值、异常值、分组、趋势等等,这可以帮助你更好的了解你的数据。
|
||||
|
||||
在这五节课当中,你将接触到来源于大自然的数据,并使用各种不同的技术来完成有趣且漂亮的可视化。
|
||||
|
||||
### 主题
|
||||
|
||||
1. [可视化数据](../09-visualization-quantities/README.md)
|
||||
1. [可视化数据分布](../10-visualization-distributions/README.md)
|
||||
1. [可视化数据占比](../11-visualization-proportions/README.md)
|
||||
1. [可视化数据间的关系](../12-visualization-relationships/README.md)
|
||||
1. [做有意义的可视化](../13-meaningful-visualizations/README.md)
|
||||
|
||||
### 致谢
|
||||
|
||||
这些可视化课程是由 [Jen Looper](https://twitter.com/jenlooper) 用 🌸 编写的
|
||||
|
||||
🍯 US Honey Production 所使用的数据来自 Jessica Li 在 [Kaggle](https://www.kaggle.com/jessicali9530/honey-production) 上的项目. 实际上,该 [数据集](https://usda.library.cornell.edu/concern/publications/rn301137d) 来自 [美国农业部](https://www.nass.usda.gov/About_NASS/index.php).
|
||||
|
||||
🍄 mushrooms 所使用的数据集也是来自于 [Kaggle](https://www.kaggle.com/hatterasdunton/mushroom-classification-updated-dataset) ,该数据集经历过 Hatteras Dunton 的一些小修订. 该数据集包括对与姬松茸和环柄菇属中 23 种金针菇相对应的假设样本的描述。 蘑菇取自于奥杜邦协会北美蘑菇野外指南 (1981)。 该数据集于 1987 年捐赠给了 UCI ML(机器学习数据集仓库) 27
|
||||
|
||||
🦆 Minnesota Birds 的数据也来自于 [Kaggle](https://www.kaggle.com/hannahcollins/minnesota-birds) ,是由 Hannah Collins 从 [Wikipedia](https://en.wikipedia.org/wiki/List_of_birds_of_Minnesota) 中获取的.
|
||||
|
||||
以上这些数据集都遵循 [CC0: Creative Commons](https://creativecommons.org/publicdomain/zero/1.0/) 条款.
|
Before Width: | Height: | Size: 6.0 KiB After Width: | Height: | Size: 4.4 KiB |
Loading…
Reference in new issue