Merge branch 'microsoft:main' into main

pull/339/head
Vidushi Gupta 4 years ago committed by GitHub
commit a5dbadc1c5
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -67,11 +67,11 @@ Vast amounts of data are incomprehensible for a human being, but once we create
## Types of Data ## Types of Data
As we have already mentioned, data is everywhere. We just need to capture it in the right way! It is useful to distinguish between **structured** and **unstructured** data. The former is typically represented in some well-structured form, often as a table or number of tables, while the latter is just a collection of files. Sometimes we can also talk about **semistructured** data, that have some sort of a structure that may vary greatly. As we have already mentioned, data is everywhere. We just need to capture it in the right way! It is useful to distinguish between **structured** and **unstructured** data. The former is typically represented in some well-structured form, often as a table or number of tables, while the latter is just a collection of files. Sometimes we can also talk about **semi-structured** data, that have some sort of a structure that may vary greatly.
| Structured | Semi-structured | Unstructured | | Structured | Semi-structured | Unstructured |
| ---------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------- | --------------------------------------- | | ---------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------- | --------------------------------------- |
| List of people with their phone numbers | Wikipedia pages with links | Text of Encyclopaedia Britannica | | List of people with their phone numbers | Wikipedia pages with links | Text of Encyclopedia Britannica |
| Temperature in all rooms of a building at every minute for the last 20 years | Collection of scientific papers in JSON format with authors, data of publication, and abstract | File share with corporate documents | | Temperature in all rooms of a building at every minute for the last 20 years | Collection of scientific papers in JSON format with authors, data of publication, and abstract | File share with corporate documents |
| Data for age and gender of all people entering the building | Internet pages | Raw video feed from surveillance camera | | Data for age and gender of all people entering the building | Internet pages | Raw video feed from surveillance camera |

@ -12,7 +12,7 @@ Market trends tell us that by 2022, 1-in-3 large organizations will buy and sell
Trends also indicate that we will create and consume over [180 zettabytes](https://www.statista.com/statistics/871513/worldwide-data-created/) of data by 2025. As **Data Scientists**, this gives us unprecedented levels of access to personal data. This means we can build behavioral profiles of users and influence decision-making in ways that create an [illusion of free choice](https://www.datasciencecentral.com/profiles/blogs/the-illusion-of-choice) while potentially nudging users towards outcomes we prefer. It also raises broader questions on data privacy and user protections. Trends also indicate that we will create and consume over [180 zettabytes](https://www.statista.com/statistics/871513/worldwide-data-created/) of data by 2025. As **Data Scientists**, this gives us unprecedented levels of access to personal data. This means we can build behavioral profiles of users and influence decision-making in ways that create an [illusion of free choice](https://www.datasciencecentral.com/profiles/blogs/the-illusion-of-choice) while potentially nudging users towards outcomes we prefer. It also raises broader questions on data privacy and user protections.
Data ethics are now _necessary guardrails_ for data science and engineering, helping us minimize potential harms and unintended consequences from our data-driven actions. The [Gartner Hype Cycle for AI](https://www.gartner.com/smarterwithgartner/2-megatrends-dominate-the-gartner-hype-cycle-for-artificial-intelligence-2020/) identifies relevant trends in digital ethics, responsible AI ,and AI governances as key drivers for larger megatrends around _democratization_ and _industrialization_ of AI. Data ethics are now _necessary guardrails_ for data science and engineering, helping us minimize potential harms and unintended consequences from our data-driven actions. The [Gartner Hype Cycle for AI](https://www.gartner.com/smarterwithgartner/2-megatrends-dominate-the-gartner-hype-cycle-for-artificial-intelligence-2020/) identifies relevant trends in digital ethics, responsible AI ,and AI governance as key drivers for larger megatrends around _democratization_ and _industrialization_ of AI.
![Gartner's Hype Cycle for AI - 2020](https://images-cdn.newscred.com/Zz1mOWJhNzlkNDA2ZTMxMWViYjRiOGFiM2IyMjQ1YmMwZQ==) ![Gartner's Hype Cycle for AI - 2020](https://images-cdn.newscred.com/Zz1mOWJhNzlkNDA2ZTMxMWViYjRiOGFiM2IyMjQ1YmMwZQ==)
@ -179,7 +179,7 @@ Here are a few examples:
| Ethics Challenge | Case Study | | Ethics Challenge | Case Study |
|--- |--- | |--- |--- |
| **Informed Consent** | 1972 - [Tuskegee Syphillis Study](https://en.wikipedia.org/wiki/Tuskegee_Syphilis_Study) - African American men who participated in the study were promised free medical care _but deceived_ by researchers who failed to inform subjects of their diagnosis or about availability of treatment. Many subjects died & partners or children were affected; the study lasted 40 years. | | **Informed Consent** | 1972 - [Tuskegee Syphilis Study](https://en.wikipedia.org/wiki/Tuskegee_Syphilis_Study) - African American men who participated in the study were promised free medical care _but deceived_ by researchers who failed to inform subjects of their diagnosis or about availability of treatment. Many subjects died & partners or children were affected; the study lasted 40 years. |
| **Data Privacy** | 2007 - The [Netflix data prize](https://www.wired.com/2007/12/why-anonymous-data-sometimes-isnt/) provided researchers with _10M anonymized movie rankings from 50K customers_ to help improve recommendation algorithms. However, researchers were able to correlate anonymized data with personally-identifiable data in _external datasets_ (e.g., IMDb comments) - effectively "de-anonymizing" some Netflix subscribers.| | **Data Privacy** | 2007 - The [Netflix data prize](https://www.wired.com/2007/12/why-anonymous-data-sometimes-isnt/) provided researchers with _10M anonymized movie rankings from 50K customers_ to help improve recommendation algorithms. However, researchers were able to correlate anonymized data with personally-identifiable data in _external datasets_ (e.g., IMDb comments) - effectively "de-anonymizing" some Netflix subscribers.|
| **Collection Bias** | 2013 - The City of Boston [developed Street Bump](https://www.boston.gov/transportation/street-bump), an app that let citizens report potholes, giving the city better roadway data to find and fix issues. However, [people in lower income groups had less access to cars and phones](https://hbr.org/2013/04/the-hidden-biases-in-big-data), making their roadway issues invisible in this app. Developers worked with academics to _equitable access and digital divides_ issues for fairness. | | **Collection Bias** | 2013 - The City of Boston [developed Street Bump](https://www.boston.gov/transportation/street-bump), an app that let citizens report potholes, giving the city better roadway data to find and fix issues. However, [people in lower income groups had less access to cars and phones](https://hbr.org/2013/04/the-hidden-biases-in-big-data), making their roadway issues invisible in this app. Developers worked with academics to _equitable access and digital divides_ issues for fairness. |
| **Algorithmic Fairness** | 2018 - The MIT [Gender Shades Study](http://gendershades.org/overview.html) evaluated the accuracy of gender classification AI products, exposing gaps in accuracy for women and persons of color. A [2019 Apple Card](https://www.wired.com/story/the-apple-card-didnt-see-genderand-thats-the-problem/) seemed to offer less credit to women than men. Both illustrated issues in algorithmic bias leading to socio-economic harms.| | **Algorithmic Fairness** | 2018 - The MIT [Gender Shades Study](http://gendershades.org/overview.html) evaluated the accuracy of gender classification AI products, exposing gaps in accuracy for women and persons of color. A [2019 Apple Card](https://www.wired.com/story/the-apple-card-didnt-see-genderand-thats-the-problem/) seemed to offer less credit to women than men. Both illustrated issues in algorithmic bias leading to socio-economic harms.|

@ -250,7 +250,7 @@ Use the sample code in the notebook to test other hypothesis that:
Probability and statistics is such a broad topic that it deserves its own course. If you are interested to go deeper into theory, you may want to continue reading some of the following books: Probability and statistics is such a broad topic that it deserves its own course. If you are interested to go deeper into theory, you may want to continue reading some of the following books:
1. [Carlos Fernanderz-Granda](https://cims.nyu.edu/~cfgranda/) from New York University has great lecture notes [Probability and Statistics for Data Science](https://cims.nyu.edu/~cfgranda/pages/stuff/probability_stats_for_DS.pdf) (available online) 1. [Carlos Fernandez-Granda](https://cims.nyu.edu/~cfgranda/) from New York University has great lecture notes [Probability and Statistics for Data Science](https://cims.nyu.edu/~cfgranda/pages/stuff/probability_stats_for_DS.pdf) (available online)
1. [Peter and Andrew Bruce. Practical Statistics for Data Scientists.](https://www.oreilly.com/library/view/practical-statistics-for/9781491952955/) [[sample code in R](https://github.com/andrewgbruce/statistics-for-data-scientists)]. 1. [Peter and Andrew Bruce. Practical Statistics for Data Scientists.](https://www.oreilly.com/library/view/practical-statistics-for/9781491952955/) [[sample code in R](https://github.com/andrewgbruce/statistics-for-data-scientists)].
1. [James D. Miller. Statistics for Data Science](https://www.packtpub.com/product/statistics-for-data-science/9781788290678) [[sample code in R](https://github.com/PacktPublishing/Statistics-for-Data-Science)] 1. [James D. Miller. Statistics for Data Science](https://www.packtpub.com/product/statistics-for-data-science/9781788290678) [[sample code in R](https://github.com/PacktPublishing/Statistics-for-Data-Science)]

@ -13,11 +13,12 @@ In this assignment, we will work with a small dataset of diabetes patients taken
* Open the [assignment notebook](assignment.ipynb) in a jupyter notebook environment * Open the [assignment notebook](assignment.ipynb) in a jupyter notebook environment
* Complete all tasks listed in the notebook, namely: * Complete all tasks listed in the notebook, namely:
[ ] Compute mean values and variance for all values * [ ] Compute mean values and variance for all values
[ ] Plot boxplots for BMI, BP and Y depending on gender * [ ] Plot boxplots for BMI, BP and Y depending on gender
[ ] What is the the distribution of Age, Sex, BMI and Y variables? * [ ] What is the the distribution of Age, Sex, BMI and Y variables?
[ ] Test the correlation between different variables and disease progression (Y) * [ ] Test the correlation between different variables and disease progression (Y)
[ ] Test the hypothesis that the degree of diabetes progression is different between men and women * [ ] Test the hypothesis that the degree of diabetes progression is different between men and women
## Rubric ## Rubric
Exemplary | Adequate | Needs Improvement Exemplary | Adequate | Needs Improvement

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because it is too large Load Diff

@ -0,0 +1,18 @@
# Trabajando con datos
![Amor por los datos](../images/data-love.jpg)
> Fotografía de <a href="https://unsplash.com/@swimstaralex?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Alexander Sinn</a> en <a href="https://unsplash.com/s/photos/data?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Unsplash</a>
En estas lecciones, aprenderás algunas de las formas para manejar datos, también aprenderás a manipularlos y usarlos en aplicaciones. Aprendera sobre bases de datos relacionales y no relacionales así como también almacenar datos en estas. Veremos los fundamentos de Python para poder administrar datos y extraerlos.
### Temas
1. [Bases de datos relacionales](../05-relational-databases/translations/README.es.md)
2. [Bases de datos no relacionales](../06-non-relational/README.md)
3. [Trabajando con Python](../07-python/README.md)
4. [Preparando datos](../08-data-preparation/README.md)
### Créditos
Estas lecciones fueron escritas con ❤️ por [Christopher Harrison](https://twitter.com/geektrainer), [Dmitry Soshnikov](https://twitter.com/shwars) y [Jasmine Greenaway](https://twitter.com/paladique)

@ -5442,9 +5442,9 @@
} }
}, },
"follow-redirects": { "follow-redirects": {
"version": "1.13.1", "version": "1.14.7",
"resolved": "https://registry.npmjs.org/follow-redirects/-/follow-redirects-1.13.1.tgz", "resolved": "https://registry.npmjs.org/follow-redirects/-/follow-redirects-1.14.7.tgz",
"integrity": "sha512-SSG5xmZh1mkPGyKzjZP8zLjltIfpW32Y5QpdNJyjcfGxK3qo3NDDkZOZSFiGn1A6SclQxY9GzEwAHQ3dmYRWpg==", "integrity": "sha512-+hbxoLbFMbRKDwohX8GkTataGqO6Jb7jGwpAlwgy2bIz25XtRm7KEzJM76R1WiNT5SwZkX4Y75SwBolkpmE7iQ==",
"dev": true "dev": true
}, },
"for-in": { "for-in": {
@ -10998,11 +10998,10 @@
} }
}, },
"vue-loader-v16": { "vue-loader-v16": {
"version": "npm:vue-loader@16.5.0", "version": "npm:vue-loader@16.8.3",
"resolved": "https://registry.npmjs.org/vue-loader/-/vue-loader-16.5.0.tgz", "resolved": "https://registry.npmjs.org/vue-loader/-/vue-loader-16.8.3.tgz",
"integrity": "sha512-WXh+7AgFxGTgb5QAkQtFeUcHNIEq3PGVQ8WskY5ZiFbWBkOwcCPRs4w/2tVyTbh2q6TVRlO3xfvIukUtjsu62A==", "integrity": "sha512-7vKN45IxsKxe5GcVCbc2qFU5aWzyiLrYJyUuMz4BQLKctCj/fmCa0w6fGiiQ2cLFetNcek1ppGJQDCup0c1hpA==",
"dev": true, "dev": true,
"optional": true,
"requires": { "requires": {
"chalk": "^4.1.0", "chalk": "^4.1.0",
"hash-sum": "^2.0.0", "hash-sum": "^2.0.0",
@ -11014,7 +11013,6 @@
"resolved": "https://registry.npmjs.org/ansi-styles/-/ansi-styles-4.3.0.tgz", "resolved": "https://registry.npmjs.org/ansi-styles/-/ansi-styles-4.3.0.tgz",
"integrity": "sha512-zbB9rCJAT1rbjiVDb2hqKFHNYLxgtk8NURxZ3IZwD3F6NtxbXZQCnnSi1Lkx+IDohdPlFp222wVALIheZJQSEg==", "integrity": "sha512-zbB9rCJAT1rbjiVDb2hqKFHNYLxgtk8NURxZ3IZwD3F6NtxbXZQCnnSi1Lkx+IDohdPlFp222wVALIheZJQSEg==",
"dev": true, "dev": true,
"optional": true,
"requires": { "requires": {
"color-convert": "^2.0.1" "color-convert": "^2.0.1"
} }
@ -11024,7 +11022,6 @@
"resolved": "https://registry.npmjs.org/chalk/-/chalk-4.1.2.tgz", "resolved": "https://registry.npmjs.org/chalk/-/chalk-4.1.2.tgz",
"integrity": "sha512-oKnbhFyRIXpUuez8iBMmyEa4nbj4IOQyuhc/wy9kY7/WVPcwIO9VA668Pu8RkO7+0G76SLROeyw9CpQ061i4mA==", "integrity": "sha512-oKnbhFyRIXpUuez8iBMmyEa4nbj4IOQyuhc/wy9kY7/WVPcwIO9VA668Pu8RkO7+0G76SLROeyw9CpQ061i4mA==",
"dev": true, "dev": true,
"optional": true,
"requires": { "requires": {
"ansi-styles": "^4.1.0", "ansi-styles": "^4.1.0",
"supports-color": "^7.1.0" "supports-color": "^7.1.0"
@ -11035,7 +11032,6 @@
"resolved": "https://registry.npmjs.org/color-convert/-/color-convert-2.0.1.tgz", "resolved": "https://registry.npmjs.org/color-convert/-/color-convert-2.0.1.tgz",
"integrity": "sha512-RRECPsj7iu/xb5oKYcsFHSppFNnsj/52OVTRKb4zP5onXwVF3zVmmToNcOfGC+CRDpfK/U584fMg38ZHCaElKQ==", "integrity": "sha512-RRECPsj7iu/xb5oKYcsFHSppFNnsj/52OVTRKb4zP5onXwVF3zVmmToNcOfGC+CRDpfK/U584fMg38ZHCaElKQ==",
"dev": true, "dev": true,
"optional": true,
"requires": { "requires": {
"color-name": "~1.1.4" "color-name": "~1.1.4"
} }
@ -11044,22 +11040,19 @@
"version": "1.1.4", "version": "1.1.4",
"resolved": "https://registry.npmjs.org/color-name/-/color-name-1.1.4.tgz", "resolved": "https://registry.npmjs.org/color-name/-/color-name-1.1.4.tgz",
"integrity": "sha512-dOy+3AuW3a2wNbZHIuMZpTcgjGuLU/uBL/ubcZF9OXbDo8ff4O8yVp5Bf0efS8uEoYo5q4Fx7dY9OgQGXgAsQA==", "integrity": "sha512-dOy+3AuW3a2wNbZHIuMZpTcgjGuLU/uBL/ubcZF9OXbDo8ff4O8yVp5Bf0efS8uEoYo5q4Fx7dY9OgQGXgAsQA==",
"dev": true, "dev": true
"optional": true
}, },
"has-flag": { "has-flag": {
"version": "4.0.0", "version": "4.0.0",
"resolved": "https://registry.npmjs.org/has-flag/-/has-flag-4.0.0.tgz", "resolved": "https://registry.npmjs.org/has-flag/-/has-flag-4.0.0.tgz",
"integrity": "sha512-EykJT/Q1KjTWctppgIAgfSO0tKVuZUjhgMr17kqTumMl6Afv3EISleU7qZUzoXDFTAHTDC4NOoG/ZxU3EvlMPQ==", "integrity": "sha512-EykJT/Q1KjTWctppgIAgfSO0tKVuZUjhgMr17kqTumMl6Afv3EISleU7qZUzoXDFTAHTDC4NOoG/ZxU3EvlMPQ==",
"dev": true, "dev": true
"optional": true
}, },
"loader-utils": { "loader-utils": {
"version": "2.0.0", "version": "2.0.2",
"resolved": "https://registry.npmjs.org/loader-utils/-/loader-utils-2.0.0.tgz", "resolved": "https://registry.npmjs.org/loader-utils/-/loader-utils-2.0.2.tgz",
"integrity": "sha512-rP4F0h2RaWSvPEkD7BLDFQnvSf+nK+wr3ESUjNTyAGobqrijmW92zc+SO6d4p4B1wh7+B/Jg1mkQe5NYUEHtHQ==", "integrity": "sha512-TM57VeHptv569d/GKh6TAYdzKblwDNiumOdkFnejjD0XwTH87K90w3O7AiJRqdQoXygvi1VQTJTLGhJl7WqA7A==",
"dev": true, "dev": true,
"optional": true,
"requires": { "requires": {
"big.js": "^5.2.2", "big.js": "^5.2.2",
"emojis-list": "^3.0.0", "emojis-list": "^3.0.0",
@ -11071,7 +11064,6 @@
"resolved": "https://registry.npmjs.org/supports-color/-/supports-color-7.2.0.tgz", "resolved": "https://registry.npmjs.org/supports-color/-/supports-color-7.2.0.tgz",
"integrity": "sha512-qpCAvRl9stuOHveKsn7HncJRvv501qIacKzQlO/+Lwxc9+0q2wLyv4Dfvt80/DPn2pqOBsJdDiogXGR9+OvwRw==", "integrity": "sha512-qpCAvRl9stuOHveKsn7HncJRvv501qIacKzQlO/+Lwxc9+0q2wLyv4Dfvt80/DPn2pqOBsJdDiogXGR9+OvwRw==",
"dev": true, "dev": true,
"optional": true,
"requires": { "requires": {
"has-flag": "^4.0.0" "has-flag": "^4.0.0"
} }

@ -1777,9 +1777,9 @@
"dev": true "dev": true
}, },
"loader-utils": { "loader-utils": {
"version": "2.0.0", "version": "2.0.2",
"resolved": "https://registry.npmjs.org/loader-utils/-/loader-utils-2.0.0.tgz", "resolved": "https://registry.npmjs.org/loader-utils/-/loader-utils-2.0.2.tgz",
"integrity": "sha512-rP4F0h2RaWSvPEkD7BLDFQnvSf+nK+wr3ESUjNTyAGobqrijmW92zc+SO6d4p4B1wh7+B/Jg1mkQe5NYUEHtHQ==", "integrity": "sha512-TM57VeHptv569d/GKh6TAYdzKblwDNiumOdkFnejjD0XwTH87K90w3O7AiJRqdQoXygvi1VQTJTLGhJl7WqA7A==",
"dev": true, "dev": true,
"requires": { "requires": {
"big.js": "^5.2.2", "big.js": "^5.2.2",
@ -1830,9 +1830,9 @@
} }
}, },
"vue-loader-v16": { "vue-loader-v16": {
"version": "npm:vue-loader@16.8.1", "version": "npm:vue-loader@16.8.3",
"resolved": "https://registry.npmjs.org/vue-loader/-/vue-loader-16.8.1.tgz", "resolved": "https://registry.npmjs.org/vue-loader/-/vue-loader-16.8.3.tgz",
"integrity": "sha512-V53TJbHmzjBhCG5OYI2JWy/aYDspz4oVHKxS43Iy212GjGIG1T3EsB3+GWXFm/1z5VwjdjLmdZUFYM70y77vtQ==", "integrity": "sha512-7vKN45IxsKxe5GcVCbc2qFU5aWzyiLrYJyUuMz4BQLKctCj/fmCa0w6fGiiQ2cLFetNcek1ppGJQDCup0c1hpA==",
"dev": true, "dev": true,
"requires": { "requires": {
"chalk": "^4.1.0", "chalk": "^4.1.0",
@ -5493,9 +5493,9 @@
} }
}, },
"follow-redirects": { "follow-redirects": {
"version": "1.13.1", "version": "1.14.7",
"resolved": "https://registry.npmjs.org/follow-redirects/-/follow-redirects-1.13.1.tgz", "resolved": "https://registry.npmjs.org/follow-redirects/-/follow-redirects-1.14.7.tgz",
"integrity": "sha512-SSG5xmZh1mkPGyKzjZP8zLjltIfpW32Y5QpdNJyjcfGxK3qo3NDDkZOZSFiGn1A6SclQxY9GzEwAHQ3dmYRWpg==", "integrity": "sha512-+hbxoLbFMbRKDwohX8GkTataGqO6Jb7jGwpAlwgy2bIz25XtRm7KEzJM76R1WiNT5SwZkX4Y75SwBolkpmE7iQ==",
"dev": true "dev": true
}, },
"for-in": { "for-in": {
@ -7039,9 +7039,9 @@
} }
}, },
"lodash": { "lodash": {
"version": "4.17.20", "version": "4.17.21",
"resolved": "https://registry.npmjs.org/lodash/-/lodash-4.17.20.tgz", "resolved": "https://registry.npmjs.org/lodash/-/lodash-4.17.21.tgz",
"integrity": "sha512-PlhdFcillOINfeV7Ni6oF1TAEayyZBoZ8bcshTHqOYJYlrqzRK5hagpagky5o4HfCzzd1TRkXPMFq6cKk9rGmA==", "integrity": "sha512-v2kDEe57lecTulaDIuNTPy3Ry4gLGJ6Z1O3vE1krgXZNrsQ+LFTGHVxVjcXPs17LhbZVGedAJv8XZ1tvj5FvSg==",
"dev": true "dev": true
}, },
"lodash.defaultsdeep": { "lodash.defaultsdeep": {

@ -1,10 +1,10 @@
# Exploring for answers # Exploring for answers
This is a continuation of the previous lesson's [assignment](..\14-Introduction\assignment.md), where we briefly took a look at the data set. Now we will be taking a deeper look at the data. This is a continuation of the previous lesson's [assignment](../14-Introduction/assignment.md), where we briefly took a look at the data set. Now we will be taking a deeper look at the data.
Again, the question the client wants to know: **Do yellow taxi passengers in New York City tip drivers more in the winter or summer?** Again, the question the client wants to know: **Do yellow taxi passengers in New York City tip drivers more in the winter or summer?**
Your team is in the [Analyzing](Readme.md) stage of the Data Science Lifecycle, where you are responsible for doing exploratory data analysis on the dataset. You have been provided a notebook and dataset that contains 200 taxi transactions from January and July 2019. Your team is in the [Analyzing](README.md) stage of the Data Science Lifecycle, where you are responsible for doing exploratory data analysis on the dataset. You have been provided a notebook and dataset that contains 200 taxi transactions from January and July 2019.
## Instructions ## Instructions

@ -157,7 +157,7 @@ Some key factors are to consider when creating a compute resource and those choi
A CPU (Central Processing Unit) is the electronic circuitry that executes instructions comprising a computer program. A GPU (Graphics Processing Unit) is a specialized electronic circuit that can execute graphics-related code at a very high rate. A CPU (Central Processing Unit) is the electronic circuitry that executes instructions comprising a computer program. A GPU (Graphics Processing Unit) is a specialized electronic circuit that can execute graphics-related code at a very high rate.
The main difference between CPU and GPU architecture is that a CPU is designed to handle a wide-range of tasks quickly (as measured by CPU clock speed), but are limited in the concurrency of tasks that can be running. GPUs are designed for parallel computing and therfore are much better at deep learning tasks. The main difference between CPU and GPU architecture is that a CPU is designed to handle a wide-range of tasks quickly (as measured by CPU clock speed), but are limited in the concurrency of tasks that can be running. GPUs are designed for parallel computing and therefore are much better at deep learning tasks.
| CPU | GPU | | CPU | GPU |
|-----------------------------------------|-----------------------------| |-----------------------------------------|-----------------------------|

@ -51,7 +51,7 @@ Let's look at one example - the [MIT Gender Shades Study](http://gendershades.or
* **What:** The objective of the research project was to _evaluate bias present in automated facial analysis algorithms and datasets_ based on gender and skin type. * **What:** The objective of the research project was to _evaluate bias present in automated facial analysis algorithms and datasets_ based on gender and skin type.
* **Why:** Facial analysis is used in areas like law enforcement, airport security, hiring systems and more - contexts where inaccurate classifications (e.g., due to bias) can cause potential economic and social harms to affected individuals or groups. Understanding (and eliminating or mitigating) biases is key to fairness in usage. * **Why:** Facial analysis is used in areas like law enforcement, airport security, hiring systems and more - contexts where inaccurate classifications (e.g., due to bias) can cause potential economic and social harms to affected individuals or groups. Understanding (and eliminating or mitigating) biases is key to fairness in usage.
* **How:** Researchers recongized that existing benchmarks used predominantly lighter-skinned subjects, and curated a new data set (1000+ images) that was _more balanced_ by gender and skin type. The data set was used to evaluate the accuracy of three gender classification products (from Microsoft, IBM & Face++). * **How:** Researchers recognized that existing benchmarks used predominantly lighter-skinned subjects, and curated a new data set (1000+ images) that was _more balanced_ by gender and skin type. The data set was used to evaluate the accuracy of three gender classification products (from Microsoft, IBM & Face++).
Results showed that though overall classification accuracy was good, there was a noticeable difference in error rates between various subgroups - with **misgendering** being higher for females or persons with darker skin types, indicative of bias. Results showed that though overall classification accuracy was good, there was a noticeable difference in error rates between various subgroups - with **misgendering** being higher for females or persons with darker skin types, indicative of bias.

@ -15,7 +15,7 @@ The Explorer interface (shown in the screenshot below) lets you select a dataset
3. Use the Explorer - pick a dataset of interest, select a relevant query & rendering option. 3. Use the Explorer - pick a dataset of interest, select a relevant query & rendering option.
![The Planetary Computer Explorer](images/Planetary-Computer-Explorer.png) ![The Planetary Computer Explorer](images/planetary-computer-explorer.png)
`Your Task:` `Your Task:`
Now study the visualization that is rendered in the browser and answer the following: Now study the visualization that is rendered in the browser and answer the following:

33
package-lock.json generated

@ -1241,10 +1241,13 @@
"dev": true "dev": true
}, },
"node-fetch": { "node-fetch": {
"version": "2.6.1", "version": "2.6.7",
"resolved": "https://registry.npmjs.org/node-fetch/-/node-fetch-2.6.1.tgz", "resolved": "https://registry.npmjs.org/node-fetch/-/node-fetch-2.6.7.tgz",
"integrity": "sha512-V4aYg89jEoVRxRb2fJdAg8FHvI7cEyYdVAh94HH0UIK8oJxUfkjlDQN9RbMx+bEjP7+ggMiFRprSti032Oipxw==", "integrity": "sha512-ZjMPFEfVx5j+y2yF35Kzx5sF7kDzxuDj6ziH4FFbOp87zKDZNx8yExJIb05OGF4Nlt9IHFIMBkRl41VdvcNdbQ==",
"dev": true "dev": true,
"requires": {
"whatwg-url": "^5.0.0"
}
}, },
"normalize-path": { "normalize-path": {
"version": "3.0.0", "version": "3.0.0",
@ -1868,6 +1871,12 @@
"integrity": "sha512-yaOH/Pk/VEhBWWTlhI+qXxDFXlejDGcQipMlyxda9nthulaxLZUNcUqFxokp0vcYnvteJln5FNQDRrxj3YcbVw==", "integrity": "sha512-yaOH/Pk/VEhBWWTlhI+qXxDFXlejDGcQipMlyxda9nthulaxLZUNcUqFxokp0vcYnvteJln5FNQDRrxj3YcbVw==",
"dev": true "dev": true
}, },
"tr46": {
"version": "0.0.3",
"resolved": "https://registry.npmjs.org/tr46/-/tr46-0.0.3.tgz",
"integrity": "sha1-gYT9NH2snNwYWZLzpmIuFLnZq2o=",
"dev": true
},
"tweezer.js": { "tweezer.js": {
"version": "1.5.0", "version": "1.5.0",
"resolved": "https://registry.npmjs.org/tweezer.js/-/tweezer.js-1.5.0.tgz", "resolved": "https://registry.npmjs.org/tweezer.js/-/tweezer.js-1.5.0.tgz",
@ -2009,6 +2018,22 @@
"integrity": "sha1-n5VxD1CiZ5R7LMwSR0HBAoQn5xM=", "integrity": "sha1-n5VxD1CiZ5R7LMwSR0HBAoQn5xM=",
"dev": true "dev": true
}, },
"webidl-conversions": {
"version": "3.0.1",
"resolved": "https://registry.npmjs.org/webidl-conversions/-/webidl-conversions-3.0.1.tgz",
"integrity": "sha1-JFNCdeKnvGvnvIZhHMFq4KVlSHE=",
"dev": true
},
"whatwg-url": {
"version": "5.0.0",
"resolved": "https://registry.npmjs.org/whatwg-url/-/whatwg-url-5.0.0.tgz",
"integrity": "sha1-lmRU6HZUYuN2RNNib2dCzotwll0=",
"dev": true,
"requires": {
"tr46": "~0.0.3",
"webidl-conversions": "^3.0.0"
}
},
"which-module": { "which-module": {
"version": "2.0.0", "version": "2.0.0",
"resolved": "https://registry.npmjs.org/which-module/-/which-module-2.0.0.tgz", "resolved": "https://registry.npmjs.org/which-module/-/which-module-2.0.0.tgz",

@ -1715,7 +1715,6 @@
"resolved": "https://registry.npmjs.org/ansi-styles/-/ansi-styles-4.3.0.tgz", "resolved": "https://registry.npmjs.org/ansi-styles/-/ansi-styles-4.3.0.tgz",
"integrity": "sha512-zbB9rCJAT1rbjiVDb2hqKFHNYLxgtk8NURxZ3IZwD3F6NtxbXZQCnnSi1Lkx+IDohdPlFp222wVALIheZJQSEg==", "integrity": "sha512-zbB9rCJAT1rbjiVDb2hqKFHNYLxgtk8NURxZ3IZwD3F6NtxbXZQCnnSi1Lkx+IDohdPlFp222wVALIheZJQSEg==",
"dev": true, "dev": true,
"optional": true,
"requires": { "requires": {
"color-convert": "^2.0.1" "color-convert": "^2.0.1"
} }
@ -1751,7 +1750,6 @@
"resolved": "https://registry.npmjs.org/chalk/-/chalk-4.1.2.tgz", "resolved": "https://registry.npmjs.org/chalk/-/chalk-4.1.2.tgz",
"integrity": "sha512-oKnbhFyRIXpUuez8iBMmyEa4nbj4IOQyuhc/wy9kY7/WVPcwIO9VA668Pu8RkO7+0G76SLROeyw9CpQ061i4mA==", "integrity": "sha512-oKnbhFyRIXpUuez8iBMmyEa4nbj4IOQyuhc/wy9kY7/WVPcwIO9VA668Pu8RkO7+0G76SLROeyw9CpQ061i4mA==",
"dev": true, "dev": true,
"optional": true,
"requires": { "requires": {
"ansi-styles": "^4.1.0", "ansi-styles": "^4.1.0",
"supports-color": "^7.1.0" "supports-color": "^7.1.0"
@ -1762,7 +1760,6 @@
"resolved": "https://registry.npmjs.org/color-convert/-/color-convert-2.0.1.tgz", "resolved": "https://registry.npmjs.org/color-convert/-/color-convert-2.0.1.tgz",
"integrity": "sha512-RRECPsj7iu/xb5oKYcsFHSppFNnsj/52OVTRKb4zP5onXwVF3zVmmToNcOfGC+CRDpfK/U584fMg38ZHCaElKQ==", "integrity": "sha512-RRECPsj7iu/xb5oKYcsFHSppFNnsj/52OVTRKb4zP5onXwVF3zVmmToNcOfGC+CRDpfK/U584fMg38ZHCaElKQ==",
"dev": true, "dev": true,
"optional": true,
"requires": { "requires": {
"color-name": "~1.1.4" "color-name": "~1.1.4"
} }
@ -1771,22 +1768,19 @@
"version": "1.1.4", "version": "1.1.4",
"resolved": "https://registry.npmjs.org/color-name/-/color-name-1.1.4.tgz", "resolved": "https://registry.npmjs.org/color-name/-/color-name-1.1.4.tgz",
"integrity": "sha512-dOy+3AuW3a2wNbZHIuMZpTcgjGuLU/uBL/ubcZF9OXbDo8ff4O8yVp5Bf0efS8uEoYo5q4Fx7dY9OgQGXgAsQA==", "integrity": "sha512-dOy+3AuW3a2wNbZHIuMZpTcgjGuLU/uBL/ubcZF9OXbDo8ff4O8yVp5Bf0efS8uEoYo5q4Fx7dY9OgQGXgAsQA==",
"dev": true, "dev": true
"optional": true
}, },
"has-flag": { "has-flag": {
"version": "4.0.0", "version": "4.0.0",
"resolved": "https://registry.npmjs.org/has-flag/-/has-flag-4.0.0.tgz", "resolved": "https://registry.npmjs.org/has-flag/-/has-flag-4.0.0.tgz",
"integrity": "sha512-EykJT/Q1KjTWctppgIAgfSO0tKVuZUjhgMr17kqTumMl6Afv3EISleU7qZUzoXDFTAHTDC4NOoG/ZxU3EvlMPQ==", "integrity": "sha512-EykJT/Q1KjTWctppgIAgfSO0tKVuZUjhgMr17kqTumMl6Afv3EISleU7qZUzoXDFTAHTDC4NOoG/ZxU3EvlMPQ==",
"dev": true, "dev": true
"optional": true
}, },
"loader-utils": { "loader-utils": {
"version": "2.0.0", "version": "2.0.2",
"resolved": "https://registry.npmjs.org/loader-utils/-/loader-utils-2.0.0.tgz", "resolved": "https://registry.npmjs.org/loader-utils/-/loader-utils-2.0.2.tgz",
"integrity": "sha512-rP4F0h2RaWSvPEkD7BLDFQnvSf+nK+wr3ESUjNTyAGobqrijmW92zc+SO6d4p4B1wh7+B/Jg1mkQe5NYUEHtHQ==", "integrity": "sha512-TM57VeHptv569d/GKh6TAYdzKblwDNiumOdkFnejjD0XwTH87K90w3O7AiJRqdQoXygvi1VQTJTLGhJl7WqA7A==",
"dev": true, "dev": true,
"optional": true,
"requires": { "requires": {
"big.js": "^5.2.2", "big.js": "^5.2.2",
"emojis-list": "^3.0.0", "emojis-list": "^3.0.0",
@ -1814,7 +1808,6 @@
"resolved": "https://registry.npmjs.org/supports-color/-/supports-color-7.2.0.tgz", "resolved": "https://registry.npmjs.org/supports-color/-/supports-color-7.2.0.tgz",
"integrity": "sha512-qpCAvRl9stuOHveKsn7HncJRvv501qIacKzQlO/+Lwxc9+0q2wLyv4Dfvt80/DPn2pqOBsJdDiogXGR9+OvwRw==", "integrity": "sha512-qpCAvRl9stuOHveKsn7HncJRvv501qIacKzQlO/+Lwxc9+0q2wLyv4Dfvt80/DPn2pqOBsJdDiogXGR9+OvwRw==",
"dev": true, "dev": true,
"optional": true,
"requires": { "requires": {
"has-flag": "^4.0.0" "has-flag": "^4.0.0"
} }
@ -1837,11 +1830,10 @@
} }
}, },
"vue-loader-v16": { "vue-loader-v16": {
"version": "npm:vue-loader@16.5.0", "version": "npm:vue-loader@16.8.3",
"resolved": "https://registry.npmjs.org/vue-loader/-/vue-loader-16.5.0.tgz", "resolved": "https://registry.npmjs.org/vue-loader/-/vue-loader-16.8.3.tgz",
"integrity": "sha512-WXh+7AgFxGTgb5QAkQtFeUcHNIEq3PGVQ8WskY5ZiFbWBkOwcCPRs4w/2tVyTbh2q6TVRlO3xfvIukUtjsu62A==", "integrity": "sha512-7vKN45IxsKxe5GcVCbc2qFU5aWzyiLrYJyUuMz4BQLKctCj/fmCa0w6fGiiQ2cLFetNcek1ppGJQDCup0c1hpA==",
"dev": true, "dev": true,
"optional": true,
"requires": { "requires": {
"chalk": "^4.1.0", "chalk": "^4.1.0",
"hash-sum": "^2.0.0", "hash-sum": "^2.0.0",
@ -5453,9 +5445,9 @@
} }
}, },
"follow-redirects": { "follow-redirects": {
"version": "1.13.1", "version": "1.14.7",
"resolved": "https://registry.npmjs.org/follow-redirects/-/follow-redirects-1.13.1.tgz", "resolved": "https://registry.npmjs.org/follow-redirects/-/follow-redirects-1.14.7.tgz",
"integrity": "sha512-SSG5xmZh1mkPGyKzjZP8zLjltIfpW32Y5QpdNJyjcfGxK3qo3NDDkZOZSFiGn1A6SclQxY9GzEwAHQ3dmYRWpg==", "integrity": "sha512-+hbxoLbFMbRKDwohX8GkTataGqO6Jb7jGwpAlwgy2bIz25XtRm7KEzJM76R1WiNT5SwZkX4Y75SwBolkpmE7iQ==",
"dev": true "dev": true
}, },
"for-in": { "for-in": {

@ -0,0 +1,112 @@
# Data Science para Inciantes - Um curso
[![GitHub license](https://img.shields.io/github/license/microsoft/Data-Science-For-Beginners.svg)](https://github.com/microsoft/Data-Science-For-Beginners/blob/master/LICENSE)
[![GitHub contributors](https://img.shields.io/github/contributors/microsoft/Data-Science-For-Beginners.svg)](https://GitHub.com/microsoft/Data-Science-For-Beginners/graphs/contributors/)
[![GitHub issues](https://img.shields.io/github/issues/microsoft/Data-Science-For-Beginners.svg)](https://GitHub.com/microsoft/Data-Science-For-Beginners/issues/)
[![GitHub pull-requests](https://img.shields.io/github/issues-pr/microsoft/Data-Science-For-Beginners.svg)](https://GitHub.com/microsoft/Data-Science-For-Beginners/pulls/)
[![PRs Welcome](https://img.shields.io/badge/PRs-welcome-brightgreen.svg?style=flat-square)](http://makeapullrequest.com)
[![GitHub watchers](https://img.shields.io/github/watchers/microsoft/Data-Science-For-Beginners.svg?style=social&label=Watch)](https://GitHub.com/microsoft/Data-Science-For-Beginners/watchers/)
[![GitHub forks](https://img.shields.io/github/forks/microsoft/Data-Science-For-Beginners.svg?style=social&label=Fork)](https://GitHub.com/microsoft/Data-Science-For-Beginners/network/)
[![GitHub stars](https://img.shields.io/github/stars/microsoft/Data-Science-For-Beginners.svg?style=social&label=Star)](https://GitHub.com/microsoft/Data-Science-For-Beginners/stargazers/)
Os promotores da Azure Cloud na Microsoft estam entusiasmados por oferecer 10 semanas, 20 lições todas sobre Data Science. Cada lição é composta por dois quizzes (um pré e outro pós aula), instruções escritas de como concluir a lição, uma solução, e ainda um trabalho de casa. A pedagogia à base de projectos, permite que aprendas enquanto crias algo, um metodo comprovado para "agarrar" as skills aprendidas.
**Um agradecimento caloroso aos nossos autores:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
**🙏 E um agradecimento muito especial 🙏 aos nosso [Estudantes Embaixadores da Microsoft](https://studentambassadors.microsoft.com/) autores, revisores e contribuidores de conteudos,** notavelmente Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/), Tauqeer Ahmad, Yogendrasingh Pawar
|![ Sketchnote by [(@sketchthedocs)](https://sketchthedocs.dev) ](../sketchnotes/00-Title.png)|
|:---:|
| Data Science para Iniciantes - _Sketchnote by [@nitya](https://twitter.com/nitya)_ |
# Primeiros Passos
> **Para Professores**: nós [incluímos algumas sugestões](for-teachers.md) em como usar este curso. Adorávamos ou vir a vossa opínião [no nosso paínel de discussões](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
> **Para Estudantes**: para utilizares este cursão por conta própria, faz fork deste repositório e completa cada um dos exercícios, começando sempre pelo quiz pré lição. De seguida lê as informações referente à lição e completa o resto das atívidades. Tenta criar os projectos com os conhecimentos adquiridos na lição em vez de copiares o código diretamente da solução. No final ou caso tenhas dúvidas podes sempre olhar para o código fornecido na pasta /solutions para as lições em que são apresentados os projectos. Outra ideia seria criares um grupo de estudo com os teus amigos, de forma a aprenderem todos juntos. Se estiveres interessado em mais conteúdo de aprendizagem, recomendamos[Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-40229-cxa).
## Conhece a equipa
[![Promo video](../ds-for-beginners.gif)](https://youtu.be/8mzavjQSMM4 "Video Promocional")
**Gif por** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
> 🎥 Clica na imagem acima para um video sobre o curso e o pessoal que o criou!
## Pedagogia
Nós escolhemos adoptar dois caminhos pedagógicos ao criar este curso: garantir uma aprendizagem à base de projectos e a inclusão de quizzes frequentes. No final deste conjunto de lições, os estudantes teram aprendido os princípios básicos de Data Science, incluido conceitos éticos, preparação, manipulação, visualização e análise de dados, assim como cenários reais da utilização da Data Science e muito mais.
Um quiz de aquecimento antes da aula de forma a cativar a atenção do aluno para o tópico a aprender, e um segundo quiz no final da aula para assegurar a consolidação de conhecimentos. Este curso foi desenhado com felxibilidade e divertimento em mente, podendo ser feito de forma seguida ou às partes. Os desafios proposto começam de forma simples aumentando de complexidade ao longo das 10 semanas.
> Encontra as nossas diretrizes de [Conduta](CODE_OF_CONDUCT.md), [Contribuição](CONTRIBUTING.md) e [Tradução](TRANSLATIONS.md). Feedback construtivo é mais apreciado!
## Cada Lição incluí:
- Um sketchbook (Opcional)
- Um vídeo suplementar (Opcional)
- Um quiz de aquecimento (Pré-Lição)
- A lição escrita
- Para lições baseadas em projectos, um guía passo-a-passo sobre como contruir o projecto
- Uma verificação de conhecimentos
- Um desafio
- Leituras Suplementares
- Um trabalho de casa
- Um quiz de consolidação (Pré-Lição)
> **Nota sobre os quizzes**: Os quizzes encontram-se [nesta aplicação](https://red-water-0103e7a0f.azurestaticapps.net/), num total de 40 quizzes com 3 perguntas cada. O link de cada quiz encontrasse nos documentos de cada lição mas a plataforma de quizzes pode ser corrida localmente: basta seguir as instruções da pasta `quiz-app`. Cada quiz esta a ser gradualmente trduzido.
## Lições
|![ Sketchnote by [(@sketchthedocs)](https://sketchthedocs.dev) ](../sketchnotes/00-Roadmap.png)|
|:---:|
| Data Science para Iniciantes: Roadmap - _Sketchnote by [@nitya](https://twitter.com/nitya)_ |
| Número da Lição | Tópico | Categoria da Lição | Conceitos a Aprender | Link da Aula | Autor |
| :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
| 01 | Definição de Data Science | [Introdução](../1-Introduction/README.md) | Aprender os conceitos base por detrás da Data Science e como estes se relacionam com a inteligência artificial, a machine learning e a big data. | [lições](../1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 02 | Ética na Data Science | [Introdução](1-Introduction/README.md) | Conceitos da Ética de dados, Desafios e Frameworks. | [lições](../1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 03 | Definição de Dados | [Introdução](../1-Introduction/README.md) | Como são classificados os dados e quais a sua origem. | [lições](../1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | Introdução a Probabilidades e Estatísticas | [Introdução](../1-Introduction/README.md) | As técnicas matemáticas de probabilidade e estatísca aplicadas aos dados. | [lições](../1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | Trabalhar com dados relacionais | [Trabalhar com Dados](../2-Working-With-Data/README.md) | Introdução a dados relacionais e aos básicos de de análise e exploração de dados relacionais através de Linguagem de Procura Estruturada, também conhecida como SQL (e pronunciado "see-quell"). | [lições](../2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | Trabalhar com dados NoSQL| [Trabalhar com Dados](../2-Working-With-Data/README.md) | Introdução a dados não relacionais, assim como aos vários tipos. Introdução aos básicos de análize de documentação de base de dados.| [lições](../2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | Trabalhar com Python | [Trabalhar com Dados](../2-Working-With-Data/README.md) | Basicos de Python para manípulação de dados através de bibliotecas como seja a bibliotéca Pandas. Conhecimento prévio dos fundamentos da linguagem de programação Python recomendado.| [lições](../2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | Preparação dos Dados | [Trabalhar com Dados](../2-Working-With-Data/README.md) |Técnicas de tratamentos de dados de forma a lidar com dados incompletos, em falta ou pouco precisos. | [lições](../2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 09 | Visualizar Quantidades | [Visualização de Dados](../3-Data-Visualization/README.md) | Aprender a utilizar Matplotlib para visualizar dados de pássaros 🦆 | [lições](../3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 10 | Visualizar Distribuições de Dados | [Visualização de Dados](../3-Data-Visualization/README.md) | Observação de tendências de dados num intervalo de tempo | [lições](../3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 11 | Visualizar Proporções | [Visualização de Dados](../3-Data-Visualization/README.md) | Visualizar percentagens de grupos e de forma discreta | [lições](../3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | Visualizar Relações | [Visualização de Dados](../3-Data-Visualization/README.md) | Visualizar ligações e correlações entre sets de dados e as suas propriedades.| [lições](../3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | Visualização Eficiente | [Visualização de Dados](../3-Data-Visualization/README.md) | Técnicas e orientação de visualização de dados para melhor obtenção de resultados. | [lições](../3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 14 | Introdução ao ciclo de vida de Data Science | [Cíclo de Vida](../4-Data-Science-Lifecycle/README.md) | Introdução ao ciclo de vida de Data Science e os primeiros passos de obtenção e extração de dados. | [lições](../4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 15 | Análise | [Cíclo de Vida](../4-Data-Science-Lifecycle/README.md) |Esta fase da Data Science foca-se nas técnicas de análise de dados. | [lições](../4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | Comunicação | [Cíclo de Vida](../4-Data-Science-Lifecycle/README.md) |Esta fase foca-se em tratar e apresentar os dados, obtendo resultados de fácil compreenção para postriores decisões. | [lições](../4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 17 | Data Science na Cloud | [Cloud Data](../5-Data-Science-In-Cloud/README.md) | Este conjunto de lições introduz o mundo da Data Science na Cloud.| [lições](../5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) e [Maud](https://twitter.com/maudstweets) |
| 18 | Data Science na Cloud | [Cloud Data](../5-Data-Science-In-Cloud/README.md) |Treino de modelos através da utilização de Ferramentas de Código de Baixo Nível. |[lições](../5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) e [Maud](https://twitter.com/maudstweets) |
| 19 | Data Science na Cloud | [Cloud Data](../5-Data-Science-In-Cloud/README.md) | Utilização de modelos treinados através da Azure Machine Learning Studio. | [lições](../5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) e [Maud](https://twitter.com/maudstweets) |
| 20 | Data Science ao vivo | [In the Wild](../6-Data-Science-In-Wild/README.md) | Exemplos de projectos de casos reais com recurso a Data Science. | [lições](../6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
## Acesso Offline
Podes correr esta documentação offline através da utilização de [Docsify](https://docsify.js.org/#/). Faz fork deste repositório, [instala Docsify](https://docsify.js.org/#/quickstart) na tua máquina local, e depois na pasta principal des repositório, escreve `docsify serve`. Este website será então acesssível no localhost porta 3000: `localhost:3000`.
>Nota, os notebooks nao seram renderizados via Docsify, por este motivo para correr um notebook, fá-lo no VS Code que esteja a correr o kernel do Python.
## PDF
Um PDF com todas as lições pode ser encontrado [aqui](https://microsoft.github.io/Data-Science-For-Beginners/pdf/readme.pdf)
## Toda a ajuda é bem vinda!
Se gostavas de traduzir este curso, segue as intruções acessíveis em [Translations](../TRANSLATIONS.md)
## Outros Cursos
A nossa equipa tambem tem outros curso que possas estar interessado!
- [Machine Learning for Beginners](https://aka.ms/ml-beginners)
- [IoT for Beginners](https://aka.ms/iot-beginners)
- [Web Dev for Beginners](https://aka.ms/webdev-beginners)
Loading…
Cancel
Save