chore(i18n): sync translations with latest source changes (chunk 1/1, 213 changes)

update-translations
localizeflow[bot] 5 days ago
parent c5a296fcf7
commit 92f21c76df

@ -0,0 +1,422 @@
{
"1-Introduction/01-defining-data-science/README.md": {
"original_hash": "43212cc1ac137b7bb1dcfb37ca06b0f4",
"translation_date": "2025-10-25T19:00:32+00:00",
"source_file": "1-Introduction/01-defining-data-science/README.md",
"language_code": "id"
},
"1-Introduction/01-defining-data-science/assignment.md": {
"original_hash": "4e0f1773b9bee1be3b28f9fe2c71b3de",
"translation_date": "2025-08-28T18:57:41+00:00",
"source_file": "1-Introduction/01-defining-data-science/assignment.md",
"language_code": "id"
},
"1-Introduction/01-defining-data-science/solution/assignment.md": {
"original_hash": "a8f79b9c0484c35b4f26e8aec7fc4d56",
"translation_date": "2025-08-28T18:58:13+00:00",
"source_file": "1-Introduction/01-defining-data-science/solution/assignment.md",
"language_code": "id"
},
"1-Introduction/02-ethics/README.md": {
"original_hash": "58860ce9a4b8a564003d2752f7c72851",
"translation_date": "2025-10-03T16:46:09+00:00",
"source_file": "1-Introduction/02-ethics/README.md",
"language_code": "id"
},
"1-Introduction/02-ethics/assignment.md": {
"original_hash": "b588c0fc73014f52520c666efc3e0cc3",
"translation_date": "2025-08-28T19:05:47+00:00",
"source_file": "1-Introduction/02-ethics/assignment.md",
"language_code": "id"
},
"1-Introduction/03-defining-data/README.md": {
"original_hash": "12339119c0165da569a93ddba05f9339",
"translation_date": "2025-09-05T23:59:07+00:00",
"source_file": "1-Introduction/03-defining-data/README.md",
"language_code": "id"
},
"1-Introduction/03-defining-data/assignment.md": {
"original_hash": "2e5cacb967c1e9dfd07809bfc441a0b4",
"translation_date": "2025-08-28T19:00:37+00:00",
"source_file": "1-Introduction/03-defining-data/assignment.md",
"language_code": "id"
},
"1-Introduction/04-stats-and-probability/README.md": {
"original_hash": "ce95884566a74db72572cd51f0cb25ad",
"translation_date": "2025-09-06T13:52:13+00:00",
"source_file": "1-Introduction/04-stats-and-probability/README.md",
"language_code": "id"
},
"1-Introduction/04-stats-and-probability/assignment.md": {
"original_hash": "01d1b493e8b51a6ebb42524f6b1bcfff",
"translation_date": "2025-08-28T18:54:06+00:00",
"source_file": "1-Introduction/04-stats-and-probability/assignment.md",
"language_code": "id"
},
"1-Introduction/README.md": {
"original_hash": "696a8474a01054281704cbfb09148949",
"translation_date": "2025-08-28T18:49:46+00:00",
"source_file": "1-Introduction/README.md",
"language_code": "id"
},
"2-Working-With-Data/05-relational-databases/README.md": {
"original_hash": "11739c7b40e7c6b16ad29e3df4e65862",
"translation_date": "2025-12-19T11:48:51+00:00",
"source_file": "2-Working-With-Data/05-relational-databases/README.md",
"language_code": "id"
},
"2-Working-With-Data/05-relational-databases/assignment.md": {
"original_hash": "25b37acdfb2452917c1aa2e2ca44317a",
"translation_date": "2025-10-24T09:57:00+00:00",
"source_file": "2-Working-With-Data/05-relational-databases/assignment.md",
"language_code": "id"
},
"2-Working-With-Data/06-non-relational/README.md": {
"original_hash": "c182e87f9f80be7e7cdffc7b40bbfccf",
"translation_date": "2025-09-05T23:49:25+00:00",
"source_file": "2-Working-With-Data/06-non-relational/README.md",
"language_code": "id"
},
"2-Working-With-Data/06-non-relational/assignment.md": {
"original_hash": "f824bfdb8b12d33293913f76f5c787c5",
"translation_date": "2025-08-28T18:07:28+00:00",
"source_file": "2-Working-With-Data/06-non-relational/assignment.md",
"language_code": "id"
},
"2-Working-With-Data/07-python/README.md": {
"original_hash": "7bfec050f4717dcc2dfd028aca9d21f3",
"translation_date": "2025-09-06T15:52:03+00:00",
"source_file": "2-Working-With-Data/07-python/README.md",
"language_code": "id"
},
"2-Working-With-Data/07-python/assignment.md": {
"original_hash": "dc8f035ce92e4eaa078ab19caa68267a",
"translation_date": "2025-08-28T18:11:50+00:00",
"source_file": "2-Working-With-Data/07-python/assignment.md",
"language_code": "id"
},
"2-Working-With-Data/08-data-preparation/README.md": {
"original_hash": "1b560955ff39a2bcf2a049fce474a951",
"translation_date": "2025-09-05T23:51:25+00:00",
"source_file": "2-Working-With-Data/08-data-preparation/README.md",
"language_code": "id"
},
"2-Working-With-Data/08-data-preparation/assignment.md": {
"original_hash": "f9d5a7275e046223fa6474477674b810",
"translation_date": "2025-08-28T18:18:17+00:00",
"source_file": "2-Working-With-Data/08-data-preparation/assignment.md",
"language_code": "id"
},
"2-Working-With-Data/README.md": {
"original_hash": "abc3309ab41bc5a7846f70ee1a055838",
"translation_date": "2025-08-28T18:05:14+00:00",
"source_file": "2-Working-With-Data/README.md",
"language_code": "id"
},
"3-Data-Visualization/09-visualization-quantities/README.md": {
"original_hash": "a49d78e32e280c410f04e5f2a2068e77",
"translation_date": "2025-09-05T23:54:11+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/README.md",
"language_code": "id"
},
"3-Data-Visualization/09-visualization-quantities/assignment.md": {
"original_hash": "ad163c4fda72c8278280b61cad317ff4",
"translation_date": "2025-08-28T18:42:49+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/assignment.md",
"language_code": "id"
},
"3-Data-Visualization/10-visualization-distributions/README.md": {
"original_hash": "80a20467e046d312809d008395051fc7",
"translation_date": "2025-09-05T23:55:46+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/README.md",
"language_code": "id"
},
"3-Data-Visualization/10-visualization-distributions/assignment.md": {
"original_hash": "40eeb9b9f94009c537c7811f9f27f037",
"translation_date": "2025-08-28T18:49:23+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/assignment.md",
"language_code": "id"
},
"3-Data-Visualization/11-visualization-proportions/README.md": {
"original_hash": "42119bcc97bee88254e381156d770f3c",
"translation_date": "2025-09-05T23:53:45+00:00",
"source_file": "3-Data-Visualization/11-visualization-proportions/README.md",
"language_code": "id"
},
"3-Data-Visualization/11-visualization-proportions/assignment.md": {
"original_hash": "1e00fe6a244c2f8f9a794c862661dd4f",
"translation_date": "2025-08-28T18:40:52+00:00",
"source_file": "3-Data-Visualization/11-visualization-proportions/assignment.md",
"language_code": "id"
},
"3-Data-Visualization/12-visualization-relationships/README.md": {
"original_hash": "0764fd4077f3f04a1d968ec371227744",
"translation_date": "2025-09-06T11:43:00+00:00",
"source_file": "3-Data-Visualization/12-visualization-relationships/README.md",
"language_code": "id"
},
"3-Data-Visualization/12-visualization-relationships/assignment.md": {
"original_hash": "680419753c086eef51be86607c623945",
"translation_date": "2025-08-28T18:47:32+00:00",
"source_file": "3-Data-Visualization/12-visualization-relationships/assignment.md",
"language_code": "id"
},
"3-Data-Visualization/13-meaningful-visualizations/README.md": {
"original_hash": "cfb068050337a36e348debaa502a24fa",
"translation_date": "2025-09-05T23:54:40+00:00",
"source_file": "3-Data-Visualization/13-meaningful-visualizations/README.md",
"language_code": "id"
},
"3-Data-Visualization/13-meaningful-visualizations/assignment.md": {
"original_hash": "e56df4c0f49357e30ac8fc77aa439dd4",
"translation_date": "2025-08-28T18:44:56+00:00",
"source_file": "3-Data-Visualization/13-meaningful-visualizations/assignment.md",
"language_code": "id"
},
"3-Data-Visualization/13-meaningful-visualizations/solution/README.md": {
"original_hash": "5c51a54dd89075a7a362890117b7ed9e",
"translation_date": "2025-08-28T18:45:16+00:00",
"source_file": "3-Data-Visualization/13-meaningful-visualizations/solution/README.md",
"language_code": "id"
},
"3-Data-Visualization/13-meaningful-visualizations/starter/README.md": {
"original_hash": "5c51a54dd89075a7a362890117b7ed9e",
"translation_date": "2025-08-28T18:45:34+00:00",
"source_file": "3-Data-Visualization/13-meaningful-visualizations/starter/README.md",
"language_code": "id"
},
"3-Data-Visualization/R/09-visualization-quantities/README.md": {
"original_hash": "22acf28f518a4769ea14fa42f4734b9f",
"translation_date": "2025-08-28T18:31:26+00:00",
"source_file": "3-Data-Visualization/R/09-visualization-quantities/README.md",
"language_code": "id"
},
"3-Data-Visualization/R/09-visualization-quantities/assignment.md": {
"original_hash": "0ea21b6513df5ade7419c6b7d65f10b1",
"translation_date": "2025-08-28T18:32:51+00:00",
"source_file": "3-Data-Visualization/R/09-visualization-quantities/assignment.md",
"language_code": "id"
},
"3-Data-Visualization/R/10-visualization-distributions/README.md": {
"original_hash": "ea67c0c40808fd723594de6896c37ccf",
"translation_date": "2025-08-28T18:35:48+00:00",
"source_file": "3-Data-Visualization/R/10-visualization-distributions/README.md",
"language_code": "id"
},
"3-Data-Visualization/R/10-visualization-distributions/assignment.md": {
"original_hash": "a233d542512136c4dd29aad38ca0175f",
"translation_date": "2025-08-28T18:36:49+00:00",
"source_file": "3-Data-Visualization/R/10-visualization-distributions/assignment.md",
"language_code": "id"
},
"3-Data-Visualization/R/11-visualization-proportions/README.md": {
"original_hash": "47028abaaafa2bcb1079702d20569066",
"translation_date": "2025-08-28T18:29:40+00:00",
"source_file": "3-Data-Visualization/R/11-visualization-proportions/README.md",
"language_code": "id"
},
"3-Data-Visualization/R/12-visualization-relationships/README.md": {
"original_hash": "a33c5d4b4156a2b41788d8720b6f724c",
"translation_date": "2025-08-28T18:33:40+00:00",
"source_file": "3-Data-Visualization/R/12-visualization-relationships/README.md",
"language_code": "id"
},
"3-Data-Visualization/R/13-meaningful-vizualizations/README.md": {
"original_hash": "b4039f1c76548d144a0aee0bf28304ec",
"translation_date": "2025-08-28T18:37:47+00:00",
"source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/README.md",
"language_code": "id"
},
"3-Data-Visualization/README.md": {
"original_hash": "1441550a0d789796b2821e04f7f4cc94",
"translation_date": "2025-08-28T18:28:43+00:00",
"source_file": "3-Data-Visualization/README.md",
"language_code": "id"
},
"4-Data-Science-Lifecycle/14-Introduction/README.md": {
"original_hash": "07e12a25d20b8f191e3cb651c27fdb2b",
"translation_date": "2025-09-06T21:20:44+00:00",
"source_file": "4-Data-Science-Lifecycle/14-Introduction/README.md",
"language_code": "id"
},
"4-Data-Science-Lifecycle/14-Introduction/assignment.md": {
"original_hash": "564445c39ad29a491abcb9356fc4d47d",
"translation_date": "2025-08-28T18:24:09+00:00",
"source_file": "4-Data-Science-Lifecycle/14-Introduction/assignment.md",
"language_code": "id"
},
"4-Data-Science-Lifecycle/15-analyzing/README.md": {
"original_hash": "661dad02c3ac239644d34c1eb51e76f8",
"translation_date": "2025-09-06T21:20:06+00:00",
"source_file": "4-Data-Science-Lifecycle/15-analyzing/README.md",
"language_code": "id"
},
"4-Data-Science-Lifecycle/15-analyzing/assignment.md": {
"original_hash": "fcc7547171f4530f159676dd73ed772e",
"translation_date": "2025-08-28T18:20:32+00:00",
"source_file": "4-Data-Science-Lifecycle/15-analyzing/assignment.md",
"language_code": "id"
},
"4-Data-Science-Lifecycle/16-communication/README.md": {
"original_hash": "215a3254ba5a222a57c5bb0192cea8e3",
"translation_date": "2025-09-06T21:21:09+00:00",
"source_file": "4-Data-Science-Lifecycle/16-communication/README.md",
"language_code": "id"
},
"4-Data-Science-Lifecycle/16-communication/assignment.md": {
"original_hash": "8980d7efd101c82d6d6ffc3458214120",
"translation_date": "2025-08-28T18:28:14+00:00",
"source_file": "4-Data-Science-Lifecycle/16-communication/assignment.md",
"language_code": "id"
},
"4-Data-Science-Lifecycle/README.md": {
"original_hash": "dd173fd30fc039a7a299898920680723",
"translation_date": "2025-08-28T18:19:11+00:00",
"source_file": "4-Data-Science-Lifecycle/README.md",
"language_code": "id"
},
"5-Data-Science-In-Cloud/17-Introduction/README.md": {
"original_hash": "5f8e7cdefa096664ae86f795be571580",
"translation_date": "2025-09-05T23:48:15+00:00",
"source_file": "5-Data-Science-In-Cloud/17-Introduction/README.md",
"language_code": "id"
},
"5-Data-Science-In-Cloud/17-Introduction/assignment.md": {
"original_hash": "96f3696153d9ed54b19a1bb65438c104",
"translation_date": "2025-08-28T18:00:57+00:00",
"source_file": "5-Data-Science-In-Cloud/17-Introduction/assignment.md",
"language_code": "id"
},
"5-Data-Science-In-Cloud/18-Low-Code/README.md": {
"original_hash": "bd4da10766c64fce4294a98f6479dfb0",
"translation_date": "2025-09-05T23:47:15+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/README.md",
"language_code": "id"
},
"5-Data-Science-In-Cloud/18-Low-Code/assignment.md": {
"original_hash": "8fdc4a5fd9bc27a8d2ebef995dfbf73f",
"translation_date": "2025-08-28T17:58:51+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/assignment.md",
"language_code": "id"
},
"5-Data-Science-In-Cloud/19-Azure/README.md": {
"original_hash": "472d3fab1c5be50f387336e7a686dbe1",
"translation_date": "2025-09-05T23:48:41+00:00",
"source_file": "5-Data-Science-In-Cloud/19-Azure/README.md",
"language_code": "id"
},
"5-Data-Science-In-Cloud/19-Azure/assignment.md": {
"original_hash": "386efdbc19786951341f6956247ee990",
"translation_date": "2025-08-28T18:04:43+00:00",
"source_file": "5-Data-Science-In-Cloud/19-Azure/assignment.md",
"language_code": "id"
},
"5-Data-Science-In-Cloud/README.md": {
"original_hash": "8dfe141a0f46f7d253e07f74913c7f44",
"translation_date": "2025-08-28T17:54:02+00:00",
"source_file": "5-Data-Science-In-Cloud/README.md",
"language_code": "id"
},
"6-Data-Science-In-Wild/20-Real-World-Examples/README.md": {
"original_hash": "0f67a4139454816631526779a456b734",
"translation_date": "2025-09-06T18:37:37+00:00",
"source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/README.md",
"language_code": "id"
},
"6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md": {
"original_hash": "d1e05715f9d97de6c4f1fb0c5a4702c0",
"translation_date": "2025-08-28T19:10:04+00:00",
"source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md",
"language_code": "id"
},
"6-Data-Science-In-Wild/README.md": {
"original_hash": "07faf02ff163e609edf0b0308dc5d4e6",
"translation_date": "2025-08-28T19:07:05+00:00",
"source_file": "6-Data-Science-In-Wild/README.md",
"language_code": "id"
},
"AGENTS.md": {
"original_hash": "cc2e18ab65df63e75d3619c4752e9b22",
"translation_date": "2025-10-03T11:30:52+00:00",
"source_file": "AGENTS.md",
"language_code": "id"
},
"CODE_OF_CONDUCT.md": {
"original_hash": "c06b12caf3c901eb3156e3dd5b0aea56",
"translation_date": "2025-08-28T17:53:37+00:00",
"source_file": "CODE_OF_CONDUCT.md",
"language_code": "id"
},
"CONTRIBUTING.md": {
"original_hash": "10f86fb29b5407088445ac803b3d0ed1",
"translation_date": "2025-10-03T14:19:44+00:00",
"source_file": "CONTRIBUTING.md",
"language_code": "id"
},
"INSTALLATION.md": {
"original_hash": "a64d8afa22ffcc2016bb239188d6acb1",
"translation_date": "2025-10-03T15:23:10+00:00",
"source_file": "INSTALLATION.md",
"language_code": "id"
},
"README.md": {
"original_hash": "8ec92ecfeb14923af733851239552146",
"translation_date": "2026-01-30T02:08:52+00:00",
"source_file": "README.md",
"language_code": "id"
},
"SECURITY.md": {
"original_hash": "0d575483100c332b2dbaefef915bb3c4",
"translation_date": "2025-08-28T17:52:24+00:00",
"source_file": "SECURITY.md",
"language_code": "id"
},
"SUPPORT.md": {
"original_hash": "872be8bc1b93ef1dd9ac3d6e8f99f6ab",
"translation_date": "2025-08-28T17:51:28+00:00",
"source_file": "SUPPORT.md",
"language_code": "id"
},
"TROUBLESHOOTING.md": {
"original_hash": "93a6a8a8a209128cbfedcbc076ee21b0",
"translation_date": "2025-10-03T15:43:50+00:00",
"source_file": "TROUBLESHOOTING.md",
"language_code": "id"
},
"USAGE.md": {
"original_hash": "f546349678757508d69ce9e1d2688446",
"translation_date": "2025-10-03T15:06:44+00:00",
"source_file": "USAGE.md",
"language_code": "id"
},
"docs/_sidebar.md": {
"original_hash": "3767555b3cc28a2865c79202f4374204",
"translation_date": "2025-08-28T18:18:42+00:00",
"source_file": "docs/_sidebar.md",
"language_code": "id"
},
"examples/README.md": {
"original_hash": "9bef7fd96c8f262339933117d9b3e342",
"translation_date": "2025-10-03T13:05:08+00:00",
"source_file": "examples/README.md",
"language_code": "id"
},
"for-teachers.md": {
"original_hash": "f7440be10c17a8a9262713af3d2818a9",
"translation_date": "2025-09-06T19:59:18+00:00",
"source_file": "for-teachers.md",
"language_code": "id"
},
"quiz-app/README.md": {
"original_hash": "e92c33ea498915a13c9aec162616db18",
"translation_date": "2025-08-28T19:06:29+00:00",
"source_file": "quiz-app/README.md",
"language_code": "id"
},
"sketchnotes/README.md": {
"original_hash": "3a848466cb63aff1a93411affb152c2a",
"translation_date": "2025-08-28T19:10:35+00:00",
"source_file": "sketchnotes/README.md",
"language_code": "id"
}
}

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "43212cc1ac137b7bb1dcfb37ca06b0f4",
"translation_date": "2025-10-25T19:00:32+00:00",
"source_file": "1-Introduction/01-defining-data-science/README.md",
"language_code": "id"
}
-->
# Mendefinisikan Ilmu Data
| ![ Sketchnote oleh [(@sketchthedocs)](https://sketchthedocs.dev) ](../../sketchnotes/01-Definitions.png) |

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "4e0f1773b9bee1be3b28f9fe2c71b3de",
"translation_date": "2025-08-28T18:57:41+00:00",
"source_file": "1-Introduction/01-defining-data-science/assignment.md",
"language_code": "id"
}
-->
# Tugas: Skenario Data Science
Dalam tugas pertama ini, kami meminta Anda untuk memikirkan beberapa proses atau masalah kehidupan nyata di berbagai domain masalah, dan bagaimana Anda dapat meningkatkannya menggunakan proses Data Science. Pertimbangkan hal-hal berikut:

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "a8f79b9c0484c35b4f26e8aec7fc4d56",
"translation_date": "2025-08-28T18:58:13+00:00",
"source_file": "1-Introduction/01-defining-data-science/solution/assignment.md",
"language_code": "id"
}
-->
# Tugas: Skenario Data Science
Dalam tugas pertama ini, kami meminta Anda untuk memikirkan beberapa proses atau masalah kehidupan nyata di berbagai domain masalah, dan bagaimana Anda dapat meningkatkannya menggunakan proses Data Science. Pikirkan hal-hal berikut:

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "58860ce9a4b8a564003d2752f7c72851",
"translation_date": "2025-10-03T16:46:09+00:00",
"source_file": "1-Introduction/02-ethics/README.md",
"language_code": "id"
}
-->
# Pengantar Etika Data
|![ Sketchnote oleh [(@sketchthedocs)](https://sketchthedocs.dev) ](../../sketchnotes/02-Ethics.png)|

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "b588c0fc73014f52520c666efc3e0cc3",
"translation_date": "2025-08-28T19:05:47+00:00",
"source_file": "1-Introduction/02-ethics/assignment.md",
"language_code": "id"
}
-->
## Menulis Studi Kasus Etika Data
## Instruksi

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "12339119c0165da569a93ddba05f9339",
"translation_date": "2025-09-05T23:59:07+00:00",
"source_file": "1-Introduction/03-defining-data/README.md",
"language_code": "id"
}
-->
# Mendefinisikan Data
|![ Sketchnote oleh [(@sketchthedocs)](https://sketchthedocs.dev) ](../../sketchnotes/03-DefiningData.png)|

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "2e5cacb967c1e9dfd07809bfc441a0b4",
"translation_date": "2025-08-28T19:00:37+00:00",
"source_file": "1-Introduction/03-defining-data/assignment.md",
"language_code": "id"
}
-->
# Mengklasifikasikan Dataset
## Instruksi

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "ce95884566a74db72572cd51f0cb25ad",
"translation_date": "2025-09-06T13:52:13+00:00",
"source_file": "1-Introduction/04-stats-and-probability/README.md",
"language_code": "id"
}
-->
# Pengantar Singkat tentang Statistik dan Probabilitas
|![ Sketchnote oleh [(@sketchthedocs)](https://sketchthedocs.dev) ](../../sketchnotes/04-Statistics-Probability.png)|
@ -64,7 +55,7 @@ Untuk membantu kita memahami distribusi data, berguna untuk berbicara tentang **
Secara grafis, kita dapat menggambarkan hubungan antara median dan kuartil dalam diagram yang disebut **box plot**:
<img src="images/boxplot_explanation.png" alt="Penjelasan Box Plot" width="50%">
<img src="../../../../translated_images/id/boxplot_explanation.4039b7de08780fd4.webp" alt="Penjelasan Box Plot" width="50%">
Di sini kita juga menghitung **rentang antar-kuartil** IQR=Q3-Q1, dan yang disebut **outlier** - nilai-nilai yang berada di luar batas [Q1-1.5*IQR,Q3+1.5*IQR].

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "01d1b493e8b51a6ebb42524f6b1bcfff",
"translation_date": "2025-08-28T18:54:06+00:00",
"source_file": "1-Introduction/04-stats-and-probability/assignment.md",
"language_code": "id"
}
-->
# Studi Kecil tentang Diabetes
Dalam tugas ini, kita akan bekerja dengan dataset kecil pasien diabetes yang diambil dari [sini](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html).

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "696a8474a01054281704cbfb09148949",
"translation_date": "2025-08-28T18:49:46+00:00",
"source_file": "1-Introduction/README.md",
"language_code": "id"
}
-->
# Pengantar Ilmu Data
![data in action](../../../translated_images/id/data.48e22bb7617d8d92188afbc4c48effb920ba79f5cebdc0652cd9f34bbbd90c18.jpg)

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "11739c7b40e7c6b16ad29e3df4e65862",
"translation_date": "2025-12-19T11:48:51+00:00",
"source_file": "2-Working-With-Data/05-relational-databases/README.md",
"language_code": "id"
}
-->
# Bekerja dengan Data: Basis Data Relasional
|![ Sketchnote oleh [(@sketchthedocs)](https://sketchthedocs.dev) ](../../sketchnotes/05-RelationalData.png)|

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "25b37acdfb2452917c1aa2e2ca44317a",
"translation_date": "2025-10-24T09:57:00+00:00",
"source_file": "2-Working-With-Data/05-relational-databases/assignment.md",
"language_code": "id"
}
-->
# Menampilkan Data Bandara
Anda telah diberikan [database](https://raw.githubusercontent.com/Microsoft/Data-Science-For-Beginners/main/2-Working-With-Data/05-relational-databases/airports.db) yang dibangun menggunakan [SQLite](https://sqlite.org/index.html) yang berisi informasi tentang bandara. Skema database ditampilkan di bawah ini. Anda akan menggunakan [ekstensi SQLite](https://marketplace.visualstudio.com/items?itemName=alexcvzz.vscode-sqlite&WT.mc_id=academic-77958-bethanycheum) di [Visual Studio Code](https://code.visualstudio.com?WT.mc_id=academic-77958-bethanycheum) untuk menampilkan informasi tentang bandara di berbagai kota.

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "c182e87f9f80be7e7cdffc7b40bbfccf",
"translation_date": "2025-09-05T23:49:25+00:00",
"source_file": "2-Working-With-Data/06-non-relational/README.md",
"language_code": "id"
}
-->
# Bekerja dengan Data: Data Non-Relasional
|![Sketchnote oleh [(@sketchthedocs)](https://sketchthedocs.dev)](../../sketchnotes/06-NoSQL.png)|

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "f824bfdb8b12d33293913f76f5c787c5",
"translation_date": "2025-08-28T18:07:28+00:00",
"source_file": "2-Working-With-Data/06-non-relational/assignment.md",
"language_code": "id"
}
-->
# Keuntungan Soda
## Instruksi

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "7bfec050f4717dcc2dfd028aca9d21f3",
"translation_date": "2025-09-06T15:52:03+00:00",
"source_file": "2-Working-With-Data/07-python/README.md",
"language_code": "id"
}
-->
# Bekerja dengan Data: Python dan Pustaka Pandas
| ![ Sketchnote oleh [(@sketchthedocs)](https://sketchthedocs.dev) ](../../sketchnotes/07-WorkWithPython.png) |

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "dc8f035ce92e4eaa078ab19caa68267a",
"translation_date": "2025-08-28T18:11:50+00:00",
"source_file": "2-Working-With-Data/07-python/assignment.md",
"language_code": "id"
}
-->
# Tugas Pemrosesan Data dalam Python
Dalam tugas ini, kami meminta Anda untuk mengembangkan lebih lanjut kode yang telah kita mulai dalam tantangan sebelumnya. Tugas ini terdiri dari dua bagian:

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "1b560955ff39a2bcf2a049fce474a951",
"translation_date": "2025-09-05T23:51:25+00:00",
"source_file": "2-Working-With-Data/08-data-preparation/README.md",
"language_code": "id"
}
-->
# Bekerja dengan Data: Persiapan Data
|![ Sketchnote oleh [(@sketchthedocs)](https://sketchthedocs.dev) ](../../sketchnotes/08-DataPreparation.png)|

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "f9d5a7275e046223fa6474477674b810",
"translation_date": "2025-08-28T18:18:17+00:00",
"source_file": "2-Working-With-Data/08-data-preparation/assignment.md",
"language_code": "id"
}
-->
# Mengevaluasi Data dari Formulir
Seorang klien telah menguji [formulir kecil](../../../../2-Working-With-Data/08-data-preparation/index.html) untuk mengumpulkan beberapa data dasar tentang basis klien mereka. Mereka telah membawa temuan mereka kepada Anda untuk memvalidasi data yang telah mereka kumpulkan. Anda dapat membuka halaman `index.html` di browser untuk melihat formulir tersebut.

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "abc3309ab41bc5a7846f70ee1a055838",
"translation_date": "2025-08-28T18:05:14+00:00",
"source_file": "2-Working-With-Data/README.md",
"language_code": "id"
}
-->
# Bekerja dengan Data
![data love](../../../translated_images/id/data-love.a22ef29e6742c852505ada062920956d3d7604870b281a8ca7c7ac6f37381d5a.jpg)

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "a49d78e32e280c410f04e5f2a2068e77",
"translation_date": "2025-09-05T23:54:11+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/README.md",
"language_code": "id"
}
-->
# Memvisualisasikan Kuantitas
|![ Sketchnote oleh [(@sketchthedocs)](https://sketchthedocs.dev) ](../../sketchnotes/09-Visualizing-Quantities.png)|

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "ad163c4fda72c8278280b61cad317ff4",
"translation_date": "2025-08-28T18:42:49+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/assignment.md",
"language_code": "id"
}
-->
# Garis, Scatter, dan Batang
## Instruksi

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "80a20467e046d312809d008395051fc7",
"translation_date": "2025-09-05T23:55:46+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/README.md",
"language_code": "id"
}
-->
# Memvisualisasikan Distribusi
|![ Sketchnote oleh [(@sketchthedocs)](https://sketchthedocs.dev) ](../../sketchnotes/10-Visualizing-Distributions.png)|

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "40eeb9b9f94009c537c7811f9f27f037",
"translation_date": "2025-08-28T18:49:23+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/assignment.md",
"language_code": "id"
}
-->
# Terapkan Keahlian Anda
## Instruksi

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "42119bcc97bee88254e381156d770f3c",
"translation_date": "2025-09-05T23:53:45+00:00",
"source_file": "3-Data-Visualization/11-visualization-proportions/README.md",
"language_code": "id"
}
-->
# Memvisualisasikan Proporsi
|![ Sketchnote oleh [(@sketchthedocs)](https://sketchthedocs.dev) ](../../sketchnotes/11-Visualizing-Proportions.png)|

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "1e00fe6a244c2f8f9a794c862661dd4f",
"translation_date": "2025-08-28T18:40:52+00:00",
"source_file": "3-Data-Visualization/11-visualization-proportions/assignment.md",
"language_code": "id"
}
-->
# Coba di Excel
## Petunjuk

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "0764fd4077f3f04a1d968ec371227744",
"translation_date": "2025-09-06T11:43:00+00:00",
"source_file": "3-Data-Visualization/12-visualization-relationships/README.md",
"language_code": "id"
}
-->
# Visualisasi Hubungan: Semua Tentang Madu 🍯
|![ Sketchnote oleh [(@sketchthedocs)](https://sketchthedocs.dev) ](../../sketchnotes/12-Visualizing-Relationships.png)|

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "680419753c086eef51be86607c623945",
"translation_date": "2025-08-28T18:47:32+00:00",
"source_file": "3-Data-Visualization/12-visualization-relationships/assignment.md",
"language_code": "id"
}
-->
# Menyelami Sarang Lebah
## Instruksi

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "cfb068050337a36e348debaa502a24fa",
"translation_date": "2025-09-05T23:54:40+00:00",
"source_file": "3-Data-Visualization/13-meaningful-visualizations/README.md",
"language_code": "id"
}
-->
# Membuat Visualisasi yang Bermakna
|![Sketchnote oleh [(@sketchthedocs)](https://sketchthedocs.dev)](../../sketchnotes/13-MeaningfulViz.png)|

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "e56df4c0f49357e30ac8fc77aa439dd4",
"translation_date": "2025-08-28T18:44:56+00:00",
"source_file": "3-Data-Visualization/13-meaningful-visualizations/assignment.md",
"language_code": "id"
}
-->
# Bangun Visualisasi Kustom Anda Sendiri
## Instruksi

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "5c51a54dd89075a7a362890117b7ed9e",
"translation_date": "2025-08-28T18:45:16+00:00",
"source_file": "3-Data-Visualization/13-meaningful-visualizations/solution/README.md",
"language_code": "id"
}
-->
# Proyek visualisasi data Dangerous Liaisons
Untuk memulai, pastikan Anda sudah memiliki NPM dan Node yang berjalan di mesin Anda. Instal dependensi (npm install) dan kemudian jalankan proyek secara lokal (npm run serve):

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "5c51a54dd89075a7a362890117b7ed9e",
"translation_date": "2025-08-28T18:45:34+00:00",
"source_file": "3-Data-Visualization/13-meaningful-visualizations/starter/README.md",
"language_code": "id"
}
-->
# Proyek visualisasi data Dangerous Liaisons
Untuk memulai, pastikan Anda memiliki NPM dan Node yang berjalan di mesin Anda. Instal dependensi (npm install) dan kemudian jalankan proyek secara lokal (npm run serve):

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "22acf28f518a4769ea14fa42f4734b9f",
"translation_date": "2025-08-28T18:31:26+00:00",
"source_file": "3-Data-Visualization/R/09-visualization-quantities/README.md",
"language_code": "id"
}
-->
# Visualisasi Kuantitas
|![ Sketchnote oleh [(@sketchthedocs)](https://sketchthedocs.dev) ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/09-Visualizing-Quantities.png)|
|:---:|

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "0ea21b6513df5ade7419c6b7d65f10b1",
"translation_date": "2025-08-28T18:32:51+00:00",
"source_file": "3-Data-Visualization/R/09-visualization-quantities/assignment.md",
"language_code": "id"
}
-->
# Garis, Scatter, dan Batang
## Instruksi

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "ea67c0c40808fd723594de6896c37ccf",
"translation_date": "2025-08-28T18:35:48+00:00",
"source_file": "3-Data-Visualization/R/10-visualization-distributions/README.md",
"language_code": "id"
}
-->
# Visualisasi Distribusi
|![ Sketchnote oleh [(@sketchthedocs)](https://sketchthedocs.dev) ](https://github.com/microsoft/Data-Science-For-Beginners/blob/main/sketchnotes/10-Visualizing-Distributions.png)|

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "a233d542512136c4dd29aad38ca0175f",
"translation_date": "2025-08-28T18:36:49+00:00",
"source_file": "3-Data-Visualization/R/10-visualization-distributions/assignment.md",
"language_code": "id"
}
-->
# Terapkan keterampilan Anda
## Instruksi

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "47028abaaafa2bcb1079702d20569066",
"translation_date": "2025-08-28T18:29:40+00:00",
"source_file": "3-Data-Visualization/R/11-visualization-proportions/README.md",
"language_code": "id"
}
-->
# Visualisasi Proporsi
|![ Sketchnote oleh [(@sketchthedocs)](https://sketchthedocs.dev) ](../../../sketchnotes/11-Visualizing-Proportions.png)|

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "a33c5d4b4156a2b41788d8720b6f724c",
"translation_date": "2025-08-28T18:33:40+00:00",
"source_file": "3-Data-Visualization/R/12-visualization-relationships/README.md",
"language_code": "id"
}
-->
# Visualisasi Hubungan: Semua Tentang Madu 🍯
|![ Sketchnote oleh [(@sketchthedocs)](https://sketchthedocs.dev) ](../../../sketchnotes/12-Visualizing-Relationships.png)|

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "b4039f1c76548d144a0aee0bf28304ec",
"translation_date": "2025-08-28T18:37:47+00:00",
"source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/README.md",
"language_code": "id"
}
-->
# Membuat Visualisasi yang Bermakna
|![ Sketchnote oleh [(@sketchthedocs)](https://sketchthedocs.dev) ](../../../sketchnotes/13-MeaningfulViz.png)|

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "1441550a0d789796b2821e04f7f4cc94",
"translation_date": "2025-08-28T18:28:43+00:00",
"source_file": "3-Data-Visualization/README.md",
"language_code": "id"
}
-->
# Visualisasi
![seekor lebah di bunga lavender](../../../translated_images/id/bee.0aa1d91132b12e3a8994b9ca12816d05ce1642010d9b8be37f8d37365ba845cf.jpg)

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "07e12a25d20b8f191e3cb651c27fdb2b",
"translation_date": "2025-09-06T21:20:44+00:00",
"source_file": "4-Data-Science-Lifecycle/14-Introduction/README.md",
"language_code": "id"
}
-->
# Pengantar Siklus Hidup Data Science
|![ Sketchnote oleh [(@sketchthedocs)](https://sketchthedocs.dev) ](../../sketchnotes/14-DataScience-Lifecycle.png)|

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "564445c39ad29a491abcb9356fc4d47d",
"translation_date": "2025-08-28T18:24:09+00:00",
"source_file": "4-Data-Science-Lifecycle/14-Introduction/assignment.md",
"language_code": "id"
}
-->
# Menilai Dataset
Seorang klien telah mendekati tim Anda untuk meminta bantuan dalam menyelidiki kebiasaan pengeluaran musiman pelanggan taksi di New York City.

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "661dad02c3ac239644d34c1eb51e76f8",
"translation_date": "2025-09-06T21:20:06+00:00",
"source_file": "4-Data-Science-Lifecycle/15-analyzing/README.md",
"language_code": "id"
}
-->
# Siklus Data Science: Menganalisis
|![ Sketchnote oleh [(@sketchthedocs)](https://sketchthedocs.dev) ](../../sketchnotes/15-Analyzing.png)|

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "fcc7547171f4530f159676dd73ed772e",
"translation_date": "2025-08-28T18:20:32+00:00",
"source_file": "4-Data-Science-Lifecycle/15-analyzing/assignment.md",
"language_code": "id"
}
-->
# Menjelajahi untuk Jawaban
Ini adalah kelanjutan dari [tugas](../14-Introduction/assignment.md) pelajaran sebelumnya, di mana kita secara singkat melihat sekilas data set. Sekarang kita akan melihat data tersebut lebih mendalam.

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "215a3254ba5a222a57c5bb0192cea8e3",
"translation_date": "2025-09-06T21:21:09+00:00",
"source_file": "4-Data-Science-Lifecycle/16-communication/README.md",
"language_code": "id"
}
-->
# Siklus Hidup Data Science: Komunikasi
|![Sketchnote oleh [(@sketchthedocs)](https://sketchthedocs.dev)](../../sketchnotes/16-Communicating.png)|

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "8980d7efd101c82d6d6ffc3458214120",
"translation_date": "2025-08-28T18:28:14+00:00",
"source_file": "4-Data-Science-Lifecycle/16-communication/assignment.md",
"language_code": "id"
}
-->
# Ceritakan sebuah kisah
## Instruksi

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "dd173fd30fc039a7a299898920680723",
"translation_date": "2025-08-28T18:19:11+00:00",
"source_file": "4-Data-Science-Lifecycle/README.md",
"language_code": "id"
}
-->
# Siklus Data Science
![communication](../../../translated_images/id/communication.06d8e2a88d30d168d661ad9f9f0a4f947ebff3719719cfdaf9ed00a406a01ead.jpg)

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "5f8e7cdefa096664ae86f795be571580",
"translation_date": "2025-09-05T23:48:15+00:00",
"source_file": "5-Data-Science-In-Cloud/17-Introduction/README.md",
"language_code": "id"
}
-->
# Pengantar Data Science di Cloud
|![ Sketchnote oleh [(@sketchthedocs)](https://sketchthedocs.dev) ](../../sketchnotes/17-DataScience-Cloud.png)|

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "96f3696153d9ed54b19a1bb65438c104",
"translation_date": "2025-08-28T18:00:57+00:00",
"source_file": "5-Data-Science-In-Cloud/17-Introduction/assignment.md",
"language_code": "id"
}
-->
# Riset Pasar
## Instruksi

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "bd4da10766c64fce4294a98f6479dfb0",
"translation_date": "2025-09-05T23:47:15+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/README.md",
"language_code": "id"
}
-->
# Data Science di Cloud: Cara "Low code/No code"
|![ Sketchnote oleh [(@sketchthedocs)](https://sketchthedocs.dev) ](../../sketchnotes/18-DataScience-Cloud.png)|

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "8fdc4a5fd9bc27a8d2ebef995dfbf73f",
"translation_date": "2025-08-28T17:58:51+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/assignment.md",
"language_code": "id"
}
-->
# Proyek Data Science Low code/No code di Azure ML
## Instruksi

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "472d3fab1c5be50f387336e7a686dbe1",
"translation_date": "2025-09-05T23:48:41+00:00",
"source_file": "5-Data-Science-In-Cloud/19-Azure/README.md",
"language_code": "id"
}
-->
# Data Science di Cloud: Cara "Azure ML SDK"
|![ Sketchnote oleh [(@sketchthedocs)](https://sketchthedocs.dev) ](../../sketchnotes/19-DataScience-Cloud.png)|

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "386efdbc19786951341f6956247ee990",
"translation_date": "2025-08-28T18:04:43+00:00",
"source_file": "5-Data-Science-In-Cloud/19-Azure/assignment.md",
"language_code": "id"
}
-->
# Proyek Data Science menggunakan Azure ML SDK
## Instruksi

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "8dfe141a0f46f7d253e07f74913c7f44",
"translation_date": "2025-08-28T17:54:02+00:00",
"source_file": "5-Data-Science-In-Cloud/README.md",
"language_code": "id"
}
-->
# Data Science di Cloud
![cloud-picture](../../../translated_images/id/cloud-picture.f5526de3c6c6387b2d656ba94f019b3352e5e3854a78440e4fb00c93e2dea675.jpg)

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "0f67a4139454816631526779a456b734",
"translation_date": "2025-09-06T18:37:37+00:00",
"source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/README.md",
"language_code": "id"
}
-->
# Ilmu Data di Dunia Nyata
| ![ Sketchnote oleh [(@sketchthedocs)](https://sketchthedocs.dev) ](../../sketchnotes/20-DataScience-RealWorld.png) |

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "d1e05715f9d97de6c4f1fb0c5a4702c0",
"translation_date": "2025-08-28T19:10:04+00:00",
"source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md",
"language_code": "id"
}
-->
# Jelajahi Dataset Planetary Computer
## Instruksi

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "07faf02ff163e609edf0b0308dc5d4e6",
"translation_date": "2025-08-28T19:07:05+00:00",
"source_file": "6-Data-Science-In-Wild/README.md",
"language_code": "id"
}
-->
# Data Science di Dunia Nyata
Penerapan ilmu data di berbagai industri.

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "cc2e18ab65df63e75d3619c4752e9b22",
"translation_date": "2025-10-03T11:30:52+00:00",
"source_file": "AGENTS.md",
"language_code": "id"
}
-->
# AGENTS.md
## Gambaran Proyek

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "c06b12caf3c901eb3156e3dd5b0aea56",
"translation_date": "2025-08-28T17:53:37+00:00",
"source_file": "CODE_OF_CONDUCT.md",
"language_code": "id"
}
-->
# Kode Etik Sumber Terbuka Microsoft
Proyek ini telah mengadopsi [Kode Etik Sumber Terbuka Microsoft](https://opensource.microsoft.com/codeofconduct/).

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "10f86fb29b5407088445ac803b3d0ed1",
"translation_date": "2025-10-03T14:19:44+00:00",
"source_file": "CONTRIBUTING.md",
"language_code": "id"
}
-->
# Berkontribusi pada Data Science untuk Pemula
Terima kasih atas minat Anda untuk berkontribusi pada kurikulum Data Science untuk Pemula! Kami menyambut kontribusi dari komunitas.

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "a64d8afa22ffcc2016bb239188d6acb1",
"translation_date": "2025-10-03T15:23:10+00:00",
"source_file": "INSTALLATION.md",
"language_code": "id"
}
-->
# Panduan Instalasi
Panduan ini akan membantu Anda menyiapkan lingkungan untuk bekerja dengan kurikulum Data Science untuk Pemula.

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "33d252f7491b696d85df7f680e7e7b90",
"translation_date": "2026-01-16T17:40:36+00:00",
"source_file": "README.md",
"language_code": "id"
}
-->
# Data Science untuk Pemula - Kurikulum
[![Open in GitHub Codespaces](https://github.com/codespaces/badge.svg)](https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=344191198)
@ -26,27 +17,27 @@ CO_OP_TRANSLATOR_METADATA:
[![Microsoft Foundry Developer Forum](https://img.shields.io/badge/GitHub-Microsoft_Foundry_Developer_Forum-blue?style=for-the-badge&logo=github&color=000000&logoColor=fff)](https://aka.ms/foundry/forum)
Azure Cloud Advocates di Microsoft dengan senang hati menawarkan kurikulum 10-minggu, 20-pelajaran yang membahas tentang Data Science. Setiap pelajaran mencakup kuis sebelum dan sesudah pelajaran, instruksi tertulis untuk menyelesaikan pelajaran, solusi, dan tugas. Pendekatan berbasis proyek kami memungkinkan Anda belajar sambil membangun, cara yang terbukti efektif agar keterampilan baru dapat 'melekat'.
Azure Cloud Advocates di Microsoft dengan senang hati menawarkan kurikulum 10 minggu, 20 pelajaran yang seluruhnya mengenai Data Science. Setiap pelajaran mencakup kuis pra-pelajaran dan pasca-pelajaran, instruksi tertulis untuk menyelesaikan pelajaran, solusi, dan tugas. Pedagogi berbasis proyek kami memungkinkan Anda belajar sambil membangun, cara terbukti agar keterampilan baru 'menempel'.
**Terima kasih hangat kepada para penulis kami:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
**Terima kasih yang sebesar-besarnya kepada para penulis kami:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer).
**🙏 Terima kasih khusus 🙏 kepada para penulis, peninjau, dan kontributor konten dari [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/),** terutama Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
**🙏 Terima kasih khusus 🙏 kepada para penulis, pengulas, dan kontributor konten [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/),** terutama Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200),
[Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/), [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/), Yogendrasingh Pawar , [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/), [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/)
|![Sketchnote by @sketchthedocs https://sketchthedocs.dev](../../../../translated_images/id/00-Title.8af36cd35da1ac55.webp)|
|![Sketchnote by @sketchthedocs https://sketchthedocs.dev](../../translated_images/id/00-Title.8af36cd35da1ac55.webp)|
|:---:|
| Data Science Untuk Pemula - _Sketchnote oleh [@nitya](https://twitter.com/nitya)_ |
| Data Science untuk Pemula - _Sketchnote oleh [@nitya](https://twitter.com/nitya)_ |
### 🌐 Dukungan Multi-Bahasa
#### Didukung melalui GitHub Action (Otomatis & Selalu Terbaru)
#### Didukung via GitHub Action (Otomatis & Selalu Terbaru)
<!-- CO-OP TRANSLATOR LANGUAGES TABLE START -->
[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh/README.md) | [Chinese (Traditional, Hong Kong)](../hk/README.md) | [Chinese (Traditional, Macau)](../mo/README.md) | [Chinese (Traditional, Taiwan)](../tw/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](./README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../br/README.md) | [Portuguese (Portugal)](../pt/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
[Arabic](../ar/README.md) | [Bengali](../bn/README.md) | [Bulgarian](../bg/README.md) | [Burmese (Myanmar)](../my/README.md) | [Chinese (Simplified)](../zh-CN/README.md) | [Chinese (Traditional, Hong Kong)](../zh-HK/README.md) | [Chinese (Traditional, Macau)](../zh-MO/README.md) | [Chinese (Traditional, Taiwan)](../zh-TW/README.md) | [Croatian](../hr/README.md) | [Czech](../cs/README.md) | [Danish](../da/README.md) | [Dutch](../nl/README.md) | [Estonian](../et/README.md) | [Finnish](../fi/README.md) | [French](../fr/README.md) | [German](../de/README.md) | [Greek](../el/README.md) | [Hebrew](../he/README.md) | [Hindi](../hi/README.md) | [Hungarian](../hu/README.md) | [Indonesian](./README.md) | [Italian](../it/README.md) | [Japanese](../ja/README.md) | [Kannada](../kn/README.md) | [Korean](../ko/README.md) | [Lithuanian](../lt/README.md) | [Malay](../ms/README.md) | [Malayalam](../ml/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Nigerian Pidgin](../pcm/README.md) | [Norwegian](../no/README.md) | [Persian (Farsi)](../fa/README.md) | [Polish](../pl/README.md) | [Portuguese (Brazil)](../pt-BR/README.md) | [Portuguese (Portugal)](../pt-PT/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Romanian](../ro/README.md) | [Russian](../ru/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Slovak](../sk/README.md) | [Slovenian](../sl/README.md) | [Spanish](../es/README.md) | [Swahili](../sw/README.md) | [Swedish](../sv/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Tamil](../ta/README.md) | [Telugu](../te/README.md) | [Thai](../th/README.md) | [Turkish](../tr/README.md) | [Ukrainian](../uk/README.md) | [Urdu](../ur/README.md) | [Vietnamese](../vi/README.md)
> **Lebih suka Mengkloning Secara Lokal?**
> **Lebih Suka Clone Secara Lokal?**
> Repositori ini menyertakan lebih dari 50 terjemahan bahasa yang secara signifikan meningkatkan ukuran unduhan. Untuk mengkloning tanpa terjemahan, gunakan sparse checkout:
> Repositori ini termasuk lebih dari 50 terjemahan bahasa yang secara signifikan meningkatkan ukuran unduhan. Untuk melakukan clone tanpa terjemahan, gunakan sparse checkout:
> ```bash
> git clone --filter=blob:none --sparse https://github.com/microsoft/Data-Science-For-Beginners.git
> cd Data-Science-For-Beginners
@ -55,48 +46,48 @@ Azure Cloud Advocates di Microsoft dengan senang hati menawarkan kurikulum 10-mi
> Ini memberi Anda semua yang Anda butuhkan untuk menyelesaikan kursus dengan unduhan yang jauh lebih cepat.
<!-- CO-OP TRANSLATOR LANGUAGES TABLE END -->
**Jika Anda ingin mendukung bahasa terjemahan tambahan yang didukung tercantum [di sini](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
**Jika Anda ingin agar bahasa tambahan didukung, daftar bahasa yang didukung ada [di sini](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)**
#### Bergabung dengan Komunitas Kami
[![Microsoft Foundry Discord](https://dcbadge.limes.pink/api/server/nTYy5BXMWG)](https://discord.gg/nTYy5BXMWG)
Kami memiliki seri belajar Discord bersama AI yang sedang berlangsung, pelajari lebih lanjut dan bergabunglah dengan kami di [Seri Belajar dengan AI](https://aka.ms/learnwithai/discord) dari 18 - 30 September, 2025. Anda akan mendapatkan tips dan trik menggunakan GitHub Copilot untuk Data Science.
Kami memiliki seri belajar Discord dengan AI yang sedang berlangsung, pelajari lebih lanjut dan bergabunglah dengan kami di [Seri Belajar dengan AI](https://aka.ms/learnwithai/discord) dari 18 - 30 September, 2025. Anda akan mendapatkan tips dan trik menggunakan GitHub Copilot untuk Data Science.
![Learn with AI series](../../../../translated_images/id/1.2b28cdc6205e26fe.webp)
![Seri Belajar dengan AI](../../translated_images/id/1.2b28cdc6205e26fe.webp)
# Apakah Anda seorang pelajar?
# Apakah Anda seorang mahasiswa?
Mulai dengan sumber daya berikut:
Mulailah dengan sumber daya berikut:
- [Halaman Student Hub](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Di halaman ini, Anda akan menemukan sumber daya untuk pemula, paket pelajar, dan bahkan cara mendapatkan voucher sertifikasi gratis. Ini adalah halaman yang ingin Anda simpan sebagai bookmark dan periksa dari waktu ke waktu karena konten kami ubah setidaknya setiap bulan.
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Bergabunglah dengan komunitas global duta pelajar, ini bisa menjadi jalan Anda ke Microsoft.
- [Halaman Student Hub](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Di halaman ini, Anda akan menemukan sumber daya untuk pemula, paket Mahasiswa, dan bahkan cara mendapatkan voucher sertifikat gratis. Ini adalah halaman yang ingin Anda tandai dan periksa dari waktu ke waktu karena kami mengganti konten setidaknya setiap bulan.
- [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Bergabung dengan komunitas global duta mahasiswa, ini bisa menjadi jalan Anda ke Microsoft.
# Memulai
## 📚 Dokumentasi
- **[Panduan Instalasi](INSTALLATION.md)** - Instruksi pengaturan langkah demi langkah untuk pemula
- **[Panduan Instalasi](INSTALLATION.md)** - Instruksi setup langkah demi langkah untuk pemula
- **[Panduan Penggunaan](USAGE.md)** - Contoh dan alur kerja umum
- **[Pemecahan Masalah](TROUBLESHOOTING.md)** - Solusi untuk masalah umum
- **[Panduan Kontribusi](CONTRIBUTING.md)** - Cara berkontribusi pada proyek ini
- **[Untuk Guru](for-teachers.md)** - Panduan pengajaran dan sumber kelas
- **[Untuk Guru](for-teachers.md)** - Panduan mengajar dan sumber daya kelas
## 👨‍🎓 Untuk Pelajar
> **Pemula Lengkap**: Baru mengenal data science? Mulailah dengan [contoh ramah pemula kami](examples/README.md)! Contoh sederhana dan berkomentar baik ini akan membantu Anda memahami dasar-dasar sebelum mendalami seluruh kurikulum.
> **[Pelajar](https://aka.ms/student-page)**: untuk menggunakan kurikulum ini sendiri, fork seluruh repo dan selesaikan latihan sendiri, mulai dengan kuis sebelum kuliah. Kemudian baca kuliah dan selesaikan kegiatan lainnya. Cobalah membuat proyek dengan memahami pelajaran daripada menyalin kode solusi; meskipun kode tersebut tersedia di folder /solutions pada setiap pelajaran berorientasi proyek. Ide lain adalah membentuk kelompok belajar dengan teman dan mempelajari konten bersama-sama. Untuk studi lebih lanjut, kami merekomendasikan [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
## 👨‍🎓 Untuk Mahasiswa
> **Pemula Total**: Baru dalam data science? Mulailah dengan [contoh ramah pemula kami](examples/README.md)! Contoh sederhana dan diberi komentar ini akan membantu Anda memahami dasar-dasarnya sebelum masuk ke seluruh kurikulum.
> **[Mahasiswa](https://aka.ms/student-page)**: untuk menggunakan kurikulum ini secara mandiri, fork seluruh repo dan selesaikan latihan sendiri, mulai dengan kuis pra-ceramah. Kemudian baca ceramah dan selesaikan sisa aktivitas. Cobalah buat proyek dengan memahami pelajaran daripada menyalin kode solusi; namun, kode itu tersedia di folder /solutions di setiap pelajaran yang berorientasi proyek. Ide lain adalah membentuk kelompok belajar dengan teman dan melewati konten bersama. Untuk studi lebih lanjut, kami merekomendasikan [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum).
**Mulai Cepat:**
1. Periksa [Panduan Instalasi](INSTALLATION.md) untuk mengatur lingkungan Anda
1. Cek [Panduan Instalasi](INSTALLATION.md) untuk menyiapkan lingkungan Anda
2. Tinjau [Panduan Penggunaan](USAGE.md) untuk belajar cara bekerja dengan kurikulum
3. Mulai dengan Pelajaran 1 dan kerjakan secara berurutan
3. Mulailah dengan Pelajaran 1 dan kerjakan secara berurutan
4. Bergabunglah dengan [komunitas Discord kami](https://aka.ms/ds4beginners/discord) untuk dukungan
## 👩‍🏫 Untuk Guru
> **Guru**: kami telah [menyertakan beberapa saran](for-teachers.md) tentang cara menggunakan kurikulum ini. Kami sangat menghargai masukan Anda [di forum diskusi kami](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
> **Guru**: kami telah [menyertakan beberapa saran](for-teachers.md) tentang cara menggunakan kurikulum ini. Kami sangat menghargai umpan balik Anda [di forum diskusi kami](https://github.com/microsoft/Data-Science-For-Beginners/discussions)!
## Kenalan dengan Tim
## Bertemu Tim
[![Video Promo](../../ds-for-beginners.gif)](https://youtu.be/8mzavjQSMM4 "Video Promo")
[![Video promo](../../ds-for-beginners.gif)](https://youtu.be/8mzavjQSMM4 "Video promo")
**Gif oleh** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal)
@ -104,103 +95,103 @@ Mulai dengan sumber daya berikut:
## Pedagogi
Kami telah memilih dua prinsip pedagogis saat membangun kurikulum ini: memastikan bahwa kurikulum berbasis proyek dan mencakup kuis yang sering. Pada akhir seri ini, siswa akan mempelajari prinsip dasar ilmu data, termasuk konsep etika, persiapan data, berbagai cara bekerja dengan data, visualisasi data, analisis data, contoh penggunaan ilmu data di dunia nyata, dan lainnya.
Kami telah memilih dua prinsip pedagogis saat membangun kurikulum ini: memastikan bahwa kurikulum ini berbasis proyek dan menyertakan kuis secara berkala. Pada akhir seri ini, siswa akan mempelajari prinsip dasar ilmu data, termasuk konsep etika, persiapan data, berbagai cara bekerja dengan data, visualisasi data, analisis data, penggunaan ilmu data di dunia nyata, dan lainnya.
Selain itu, kuis dengan tingkat tekanan rendah sebelum kelas memfokuskan niat siswa untuk mempelajari topik, sementara kuis kedua setelah kelas memastikan daya ingat lebih lanjut. Kurikulum ini dirancang untuk fleksibel dan menyenangkan serta dapat diikuti secara keseluruhan atau sebagian. Proyek dimulai dari yang kecil dan menjadi semakin kompleks pada akhir siklus 10 minggu.
Selain itu, kuis ringan sebelum kelas menetapkan niat siswa untuk belajar sebuah topik, sementara kuis kedua setelah kelas memastikan penyerapan materi lebih lanjut. Kurikulum ini dirancang agar fleksibel dan menyenangkan dan dapat diikuti secara keseluruhan atau sebagian. Proyek-proyek dimulai dari yang kecil dan menjadi semakin kompleks pada akhir siklus 10 minggu.
> Temukan [Kode Etik](CODE_OF_CONDUCT.md), [Kontribusi](CONTRIBUTING.md), [Panduan Terjemahan](TRANSLATIONS.md) kami. Kami menyambut umpan balik konstruktif Anda!
> Temukan [Kode Etik](CODE_OF_CONDUCT.md), panduan [Kontribusi](CONTRIBUTING.md), [Terjemahan](TRANSLATIONS.md) kami. Kami menyambut masukan konstruktif Anda!
## Setiap pelajaran mencakup:
- Sketchnote opsional
- Video tambahan opsional
- Video pelengkap opsional
- Kuis pemanasan sebelum pelajaran
- Pelajaran tertulis
- Untuk pelajaran berbasis proyek, panduan langkah demi langkah tentang cara membangun proyek
- Untuk pelajaran berbasis proyek, panduan langkah-demi-langkah membangun proyek
- Pemeriksaan pengetahuan
- Tantangan
- Bacaan tambahan
- Bacaan pelengkap
- Tugas
- [Kuis pasca-pelajaran](https://ff-quizzes.netlify.app/en/)
- [Kuis setelah pelajaran](https://ff-quizzes.netlify.app/en/)
> **Catatan tentang kuis**: Semua kuis terdapat dalam folder Quiz-App, dengan total 40 kuis berisi masing-masing tiga pertanyaan. Mereka terhubung dari dalam pelajaran, tetapi aplikasi kuis dapat dijalankan secara lokal atau dideploy ke Azure; ikuti petunjuk di folder `quiz-app`. Mereka sedang secara bertahap diterjemahkan.
> **Catatan tentang kuis**: Semua kuis terdapat di folder Quiz-App, dengan total 40 kuis masing-masing berisi tiga pertanyaan. Mereka dihubungkan dari dalam pelajaran, tetapi aplikasi kuis dapat dijalankan secara lokal atau dideploy ke Azure; ikuti instruksi di folder `quiz-app`. Kuis sedang dalam proses pelokalan secara bertahap.
## 🎓 Contoh Ramah Pemula
**Baru di Ilmu Data?** Kami telah membuat [direktori contoh](examples/README.md) khusus dengan kode sederhana dan komentarnya yang jelas untuk membantu Anda memulai:
**Baru dalam Ilmu Data?** Kami telah membuat direktori [contoh](examples/README.md) khusus dengan kode sederhana dan berkomentar jelas untuk membantu Anda memulai:
- 🌟 **Hello World** - Program ilmu data pertamamu
- 📂 **Memuat Data** - Pelajari cara membaca dan menjelajahi dataset
- 📊 **Analisis Sederhana** - Hitung statistik dan cari pola
- 🌟 **Hello World** - Program ilmu data pertama Anda
- 📂 **Memuat Data** - Pelajari cara membaca dan mengeksplorasi dataset
- 📊 **Analisis Sederhana** - Hitung statistik dan temukan pola
- 📈 **Visualisasi Dasar** - Buat grafik dan diagram
- 🔬 **Proyek Dunia Nyata** - Alur kerja lengkap dari awal hingga selesai
- 🔬 **Proyek Dunia Nyata** - Alur kerja lengkap dari awal hingga akhir
Setiap contoh menyertakan komentar rinci yang menjelaskan setiap langkah, sangat cocok untuk pemula mutlak!
Setiap contoh dilengkapi komentar terperinci yang menjelaskan setiap langkah, sangat cocok untuk pemula mutlak!
👉 **[Mulai dengan contoh-contoh](examples/README.md)** 👈
👉 **[Mulai dengan contoh](examples/README.md)** 👈
## Pelajaran
|![ Sketchnote oleh @sketchthedocs https://sketchthedocs.dev](../../../../translated_images/id/00-Roadmap.4905d6567dff4753.webp)|
|![ Sketchnote oleh @sketchthedocs https://sketchthedocs.dev](../../translated_images/id/00-Roadmap.4905d6567dff4753.webp)|
|:---:|
| Ilmu Data Untuk Pemula: Peta Jalan - _Sketchnote oleh [@nitya](https://twitter.com/nitya)_ |
| Ilmu Data untuk Pemula: Peta Jalan - _Sketchnote oleh [@nitya](https://twitter.com/nitya)_ |
| Nomor Pelajaran | Topik | Kelompok Pelajaran | Tujuan Pembelajaran | Pelajaran Terkait | Penulis |
| :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
| 01 | Mendefinisikan Ilmu Data | [Pengantar](1-Introduction/README.md) | Pelajari konsep dasar ilmu data dan hubungannya dengan kecerdasan buatan, pembelajaran mesin, dan big data. | [pelajaran](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| :-------------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: |
| 01 | Mendefinisikan Ilmu Data | [Pengantar](1-Introduction/README.md) | Pelajari konsep dasar di balik ilmu data dan bagaimana kaitannya dengan kecerdasan buatan, pembelajaran mesin, dan big data. | [pelajaran](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) |
| 02 | Etika Ilmu Data | [Pengantar](1-Introduction/README.md) | Konsep Etika Data, Tantangan & Kerangka Kerja. | [pelajaran](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) |
| 03 | Mendefinisikan Data | [Pengantar](1-Introduction/README.md) | Cara data diklasifikasikan dan sumber umum data. | [pelajaran](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | Pengantar Statistik & Probabilitas | [Pengantar](1-Introduction/README.md) | Teknik matematis probabilitas dan statistik untuk memahami data. | [pelajaran](1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | Bekerja dengan Data Relasional | [Bekerja Dengan Data](2-Working-With-Data/README.md) | Pengenalan data relasional dan dasar-dasar menjelajah serta menganalisis data relasional dengan Structured Query Language, juga dikenal sebagai SQL (diucapkan “see-quell”). | [pelajaran](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | Bekerja dengan Data NoSQL | [Bekerja Dengan Data](2-Working-With-Data/README.md) | Pengenalan data non-relasional, berbagai jenisnya dan dasar-dasar menjelajah serta menganalisis database dokumen. | [pelajaran](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | Bekerja dengan Python | [Bekerja Dengan Data](2-Working-With-Data/README.md) | Dasar menggunakan Python untuk eksplorasi data dengan pustaka seperti Pandas. Pemahaman dasar pemrograman Python direkomendasikan. | [pelajaran](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | Persiapan Data | [Bekerja Dengan Data](2-Working-With-Data/README.md) | Topik teknik data untuk membersihkan dan mengubah data agar dapat menangani tantangan data yang hilang, tidak akurat, atau tidak lengkap. | [pelajaran](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 03 | Mendefinisikan Data | [Pengantar](1-Introduction/README.md) | Bagaimana data diklasifikasikan dan sumber umumnya. | [pelajaran](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 04 | Pengantar Statistik & Probabilitas | [Pengantar](1-Introduction/README.md) | Teknik matematika probabilitas dan statistik untuk memahami data. | [pelajaran](1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) |
| 05 | Bekerja dengan Data Relasional | [Bekerja dengan Data](2-Working-With-Data/README.md) | Pengantar data relasional dan dasar eksplorasi serta analisis data relasional dengan Structured Query Language, yang dikenal dengan SQL (dibaca “see-quell”). | [pelajaran](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | |
| 06 | Bekerja dengan Data NoSQL | [Bekerja dengan Data](2-Working-With-Data/README.md) | Pengantar data non-relasional, berbagai tipenya dan dasar eksplorasi serta analisis database dokumen. | [pelajaran](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)|
| 07 | Bekerja dengan Python | [Bekerja dengan Data](2-Working-With-Data/README.md) | Dasar menggunakan Python untuk eksplorasi data dengan pustaka seperti Pandas. Disarankan memiliki pemahaman dasar tentang pemrograman Python. | [pelajaran](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) |
| 08 | Persiapan Data | [Bekerja dengan Data](2-Working-With-Data/README.md) | Topik tentang teknik data untuk membersihkan dan mengubah data guna mengatasi tantangan data yang hilang, tidak akurat, atau tidak lengkap. | [pelajaran](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) |
| 09 | Visualisasi Kuantitas | [Visualisasi Data](3-Data-Visualization/README.md) | Pelajari cara menggunakan Matplotlib untuk memvisualisasikan data burung 🦆 | [pelajaran](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) |
| 10 | Visualisasi Distribusi Data | [Visualisasi Data](3-Data-Visualization/README.md) | Memvisualisasikan pengamatan dan tren dalam sebuah interval. | [pelajaran](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 11 | Visualisasi Proporsi | [Visualisasi Data](3-Data-Visualization/README.md) | Memvisualisasikan persentase diskret dan berkelompok. | [pelajaran](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | Visualisasi Hubungan | [Visualisasi Data](3-Data-Visualization/README.md) | Memvisualisasikan koneksi dan korelasi antara set data dan variabelnya. | [pelajaran](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | Visualisasi Bermakna | [Visualisasi Data](3-Data-Visualization/README.md) | Teknik dan panduan untuk membuat visualisasi Anda bernilai guna untuk pemecahan masalah dan wawasan yang efektif. | [pelajaran](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 14 | Pengantar siklus hidup Ilmu Data | [Siklus Hidup](4-Data-Science-Lifecycle/README.md) | Pengantar siklus hidup ilmu data dan langkah pertama mengakuisisi serta mengekstrak data. | [pelajaran](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 15 | Menganalisis | [Siklus Hidup](4-Data-Science-Lifecycle/README.md) | Fase siklus hidup ilmu data ini berfokus pada teknik menganalisis data. | [pelajaran](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | Komunikasi | [Siklus Hidup](4-Data-Science-Lifecycle/README.md) | Fase siklus hidup ilmu data ini berfokus pada menyampaikan wawasan dari data dengan cara yang memudahkan pengambil keputusan untuk memahami. | [pelajaran](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 10 | Visualisasi Distribusi Data | [Visualisasi Data](3-Data-Visualization/README.md) | Visualisasi observasi dan tren dalam sebuah interval. | [pelajaran](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 11 | Visualisasi Proporsi | [Visualisasi Data](3-Data-Visualization/README.md) | Visualisasi persentase diskrit dan berkelompok. | [pelajaran](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) |
| 12 | Visualisasi Hubungan | [Visualisasi Data](3-Data-Visualization/README.md) | Visualisasi koneksi dan korelasi antar set data dan variabelnya. | [pelajaran](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) |
| 13 | Visualisasi yang Bermakna | [Visualisasi Data](3-Data-Visualization/README.md) | Teknik dan panduan untuk membuat visualisasi Anda berharga untuk pemecahan masalah dan wawasan yang efektif. | [pelajaran](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) |
| 14 | Pengantar Siklus Hidup Ilmu Data | [Siklus Hidup](4-Data-Science-Lifecycle/README.md) | Pengantar siklus hidup ilmu data dan langkah pertama yaitu memperoleh dan mengekstrak data. | [pelajaran](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) |
| 15 | Menganalisis | [Siklus Hidup](4-Data-Science-Lifecycle/README.md) | Fase siklus hidup ilmu data yang berfokus pada teknik analisis data. | [pelajaran](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | |
| 16 | Komunikasi | [Siklus Hidup](4-Data-Science-Lifecycle/README.md) | Fase siklus hidup ilmu data yang berfokus pada penyajian wawasan dari data dengan cara yang memudahkan pengambil keputusan untuk memahami. | [pelajaran](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | |
| 17 | Ilmu Data di Cloud | [Data Cloud](5-Data-Science-In-Cloud/README.md) | Seri pelajaran ini memperkenalkan ilmu data di cloud dan manfaatnya. | [pelajaran](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) dan [Maud](https://twitter.com/maudstweets) |
| 18 | Ilmu Data di Cloud | [Data Cloud](5-Data-Science-In-Cloud/README.md) | Melatih model menggunakan alat Low Code. |[pelajaran](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) dan [Maud](https://twitter.com/maudstweets) |
| 19 | Ilmu Data di Cloud | [Data Cloud](5-Data-Science-In-Cloud/README.md) | Mendeploy model dengan Azure Machine Learning Studio. | [pelajaran](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) dan [Maud](https://twitter.com/maudstweets) |
| 20 | Ilmu Data di Dunia Nyata | [Di Dunia Nyata](6-Data-Science-In-Wild/README.md) | Proyek-proyek berbasis ilmu data di dunia nyata. | [pelajaran](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
| 19 | Ilmu Data di Cloud | [Data Cloud](5-Data-Science-In-Cloud/README.md) | Mendistribusikan model dengan Azure Machine Learning Studio. | [pelajaran](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) dan [Maud](https://twitter.com/maudstweets) |
| 20 | Ilmu Data di Lapangan | [Di Lapangan](6-Data-Science-In-Wild/README.md) | Proyek-proyek ilmu data di dunia nyata. | [pelajaran](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) |
## GitHub Codespaces
Ikuti langkah-langkah ini untuk membuka contoh ini dalam Codespace:
1. Klik menu drop-down Kode dan pilih opsi Buka dengan Codespaces.
2. Pilih + Codespace baru di bagian bawah panel.
Untuk informasi lebih lanjut, lihat [dokumentasi GitHub](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
Ikuti langkah berikut untuk membuka contoh ini di Codespace:
1. Klik menu tarik turun Code dan pilih opsi Open with Codespaces.
2. Pilih + New codespace di bagian bawah panel.
Untuk info lebih lanjut, lihat [dokumentasi GitHub](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace).
## VSCode Remote - Containers
Ikuti langkah-langkah ini untuk membuka repo ini dalam container menggunakan mesin lokal dan VSCode dengan ekstensi VS Code Remote - Containers:
Ikuti langkah berikut untuk membuka repo ini dalam container menggunakan mesin lokal dan VSCode dengan ekstensi VS Code Remote - Containers:
1. Jika ini adalah pertama kalinya Anda menggunakan container pengembangan, pastikan sistem Anda memenuhi prasyarat (misalnya sudah memasang Docker) dalam [dokumentasi memulai](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
1. Jika ini pertama kali Anda menggunakan container pengembangan, pastikan sistem Anda memenuhi prasyarat (misalnya telah menginstal Docker) dalam [dokumentasi memulai](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started).
Untuk menggunakan repositori ini, Anda bisa membuka repositori dalam volume Docker terisolasi:
Untuk menggunakan repositori ini, Anda dapat membuka repositori di volume Docker terisolasi:
**Catatan**: Di balik layar, ini akan menggunakan perintah Remote-Containers: **Clone Repository in Container Volume...** untuk mengkloning kode sumber dalam volume Docker, bukan di filesystem lokal. [Volume](https://docs.docker.com/storage/volumes/) adalah mekanisme yang disarankan untuk menyimpan data container.
**Catatan**: Secara teknis, ini akan menggunakan perintah Remote-Containers: **Clone Repository in Container Volume...** untuk mengkloning kode sumber di volume Docker alih-alih sistem file lokal. [Volumes](https://docs.docker.com/storage/volumes/) adalah mekanisme yang disarankan untuk menyimpan data container.
Atau buka salinan repositori yang sudah dikloning atau diunduh secara lokal:
Atau buka versi lokal yang sudah diklon atau diunduh dari repositori:
- Kloning repositori ini ke filesystem lokal Anda.
- Kloning repositori ini ke sistem file lokal Anda.
- Tekan F1 dan pilih perintah **Remote-Containers: Open Folder in Container...**.
- Pilih salinan folder yang sudah dikloning, tunggu container mulai, dan coba gunakan.
- Pilih salinan folder yang sudah diklon, tunggu kontainer mulai, dan coba gunakan.
## Akses Offline
Anda dapat menjalankan dokumentasi ini secara offline dengan menggunakan [Docsify](https://docsify.js.org/#/). Fork repositori ini, [pasang Docsify](https://docsify.js.org/#/quickstart) di mesin lokal Anda, kemudian di folder root repositori ini, ketik `docsify serve`. Situs web akan dilayani di port 3000 pada localhost Anda: `localhost:3000`.
Anda dapat menjalankan dokumentasi ini secara offline dengan menggunakan [Docsify](https://docsify.js.org/#/). Fork repo ini, [instal Docsify](https://docsify.js.org/#/quickstart) di mesin lokal Anda, lalu di folder root repo ini, ketik `docsify serve`. Situs web akan dilayani di port 3000 pada localhost Anda: `localhost:3000`.
> Catatan, notebook tidak akan dirender melalui Docsify, jadi saat Anda perlu menjalankan notebook, lakukan secara terpisah di VS Code yang menjalankan kernel Python.
## Kurikulum Lain
## Kurikulum Lainnya
Tim kami juga membuat kurikulum lain! Cek:
Tim kami juga memproduksi kurikulum lain! Lihat:
<!-- CO-OP TRANSLATOR OTHER COURSES START -->
### LangChain
@ -246,11 +237,11 @@ Tim kami juga membuat kurikulum lain! Cek:
**Mengalami masalah?** Periksa [Panduan Pemecahan Masalah](TROUBLESHOOTING.md) kami untuk solusi atas masalah umum.
Jika Anda mengalami kesulitan atau memiliki pertanyaan tentang membangun aplikasi AI. Bergabunglah dengan sesama pembelajar dan pengembang berpengalaman dalam diskusi tentang MCP. Ini adalah komunitas yang mendukung di mana pertanyaan diterima dan pengetahuan dibagikan dengan bebas.
Jika Anda mengalami kebuntuan atau memiliki pertanyaan tentang membangun aplikasi AI. Bergabunglah dengan sesama pelajar dan pengembang berpengalaman dalam diskusi tentang MCP. Ini adalah komunitas yang mendukung di mana pertanyaan dipersilakan dan pengetahuan dibagikan secara bebas.
[![Microsoft Foundry Discord](https://dcbadge.limes.pink/api/server/nTYy5BXMWG)](https://discord.gg/nTYy5BXMWG)
Jika Anda memiliki umpan balik produk atau mengalami kesalahan saat membangun kunjungi:
Jika Anda memiliki masukan produk atau menemukan kesalahan saat membangun kunjungi:
[![Microsoft Foundry Developer Forum](https://img.shields.io/badge/GitHub-Microsoft_Foundry_Developer_Forum-blue?style=for-the-badge&logo=github&color=000000&logoColor=fff)](https://aka.ms/foundry/forum)
@ -258,5 +249,5 @@ Jika Anda memiliki umpan balik produk atau mengalami kesalahan saat membangun ku
<!-- CO-OP TRANSLATOR DISCLAIMER START -->
**Penafian**:
Dokumen ini telah diterjemahkan menggunakan layanan terjemahan AI [Co-op Translator](https://github.com/Azure/co-op-translator). Meskipun kami berupaya untuk mencapai ketepatan, harap dicatat bahwa terjemahan otomatis mungkin mengandung kesalahan atau ketidakakuratan. Dokumen asli dalam bahasa aslinya harus dianggap sebagai sumber yang berwenang. Untuk informasi penting, disarankan menggunakan terjemahan profesional oleh penerjemah manusia. Kami tidak bertanggung jawab atas kesalahpahaman atau salah tafsir yang timbul dari penggunaan terjemahan ini.
Dokumen ini telah diterjemahkan menggunakan layanan penerjemahan AI [Co-op Translator](https://github.com/Azure/co-op-translator). Meskipun kami berupaya mencapai akurasi, harap ketahui bahwa terjemahan otomatis mungkin mengandung kesalahan atau ketidakakuratan. Dokumen asli dalam bahasa aslinya harus dianggap sebagai sumber yang sah dan utama. Untuk informasi penting, disarankan menggunakan penerjemahan profesional oleh manusia. Kami tidak bertanggung jawab atas kesalahpahaman atau penafsiran yang keliru yang timbul dari penggunaan terjemahan ini.
<!-- CO-OP TRANSLATOR DISCLAIMER END -->

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "0d575483100c332b2dbaefef915bb3c4",
"translation_date": "2025-08-28T17:52:24+00:00",
"source_file": "SECURITY.md",
"language_code": "id"
}
-->
## Keamanan
Microsoft sangat memperhatikan keamanan produk dan layanan perangkat lunaknya, termasuk semua repositori kode sumber yang dikelola melalui organisasi GitHub kami, seperti [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet), [Xamarin](https://github.com/xamarin), dan [organisasi GitHub kami lainnya](https://opensource.microsoft.com/).

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "872be8bc1b93ef1dd9ac3d6e8f99f6ab",
"translation_date": "2025-08-28T17:51:28+00:00",
"source_file": "SUPPORT.md",
"language_code": "id"
}
-->
# Dukungan
## Cara melaporkan masalah dan mendapatkan bantuan

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "93a6a8a8a209128cbfedcbc076ee21b0",
"translation_date": "2025-10-03T15:43:50+00:00",
"source_file": "TROUBLESHOOTING.md",
"language_code": "id"
}
-->
# Panduan Pemecahan Masalah
Panduan ini memberikan solusi untuk masalah umum yang mungkin Anda temui saat bekerja dengan kurikulum Data Science untuk Pemula.

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "f546349678757508d69ce9e1d2688446",
"translation_date": "2025-10-03T15:06:44+00:00",
"source_file": "USAGE.md",
"language_code": "id"
}
-->
# Panduan Penggunaan
Panduan ini menyediakan contoh dan alur kerja umum untuk menggunakan kurikulum Data Science untuk Pemula.

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "3767555b3cc28a2865c79202f4374204",
"translation_date": "2025-08-28T18:18:42+00:00",
"source_file": "docs/_sidebar.md",
"language_code": "id"
}
-->
- Pendahuluan
- [Mendefinisikan Data Science](../1-Introduction/01-defining-data-science/README.md)
- [Etika Data Science](../1-Introduction/02-ethics/README.md)

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "9bef7fd96c8f262339933117d9b3e342",
"translation_date": "2025-10-03T13:05:08+00:00",
"source_file": "examples/README.md",
"language_code": "id"
}
-->
# Contoh Data Science untuk Pemula
Selamat datang di direktori contoh! Koleksi contoh sederhana dengan komentar yang jelas ini dirancang untuk membantu Anda memulai dengan data science, bahkan jika Anda benar-benar pemula.

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "f7440be10c17a8a9262713af3d2818a9",
"translation_date": "2025-09-06T19:59:18+00:00",
"source_file": "for-teachers.md",
"language_code": "id"
}
-->
## Untuk Pendidik
Apakah Anda ingin menggunakan kurikulum ini di kelas Anda? Silakan saja!

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "e92c33ea498915a13c9aec162616db18",
"translation_date": "2025-08-28T19:06:29+00:00",
"source_file": "quiz-app/README.md",
"language_code": "id"
}
-->
# Kuis
Kuis-kuis ini adalah kuis sebelum dan sesudah pelajaran untuk kurikulum data science di https://aka.ms/datascience-beginners

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "3a848466cb63aff1a93411affb152c2a",
"translation_date": "2025-08-28T19:10:35+00:00",
"source_file": "sketchnotes/README.md",
"language_code": "id"
}
-->
Temukan semua sketchnote di sini!
## Kredit

@ -0,0 +1,422 @@
{
"1-Introduction/01-defining-data-science/README.md": {
"original_hash": "43212cc1ac137b7bb1dcfb37ca06b0f4",
"translation_date": "2025-10-25T19:01:16+00:00",
"source_file": "1-Introduction/01-defining-data-science/README.md",
"language_code": "ms"
},
"1-Introduction/01-defining-data-science/assignment.md": {
"original_hash": "4e0f1773b9bee1be3b28f9fe2c71b3de",
"translation_date": "2025-08-28T18:57:50+00:00",
"source_file": "1-Introduction/01-defining-data-science/assignment.md",
"language_code": "ms"
},
"1-Introduction/01-defining-data-science/solution/assignment.md": {
"original_hash": "a8f79b9c0484c35b4f26e8aec7fc4d56",
"translation_date": "2025-08-28T18:58:26+00:00",
"source_file": "1-Introduction/01-defining-data-science/solution/assignment.md",
"language_code": "ms"
},
"1-Introduction/02-ethics/README.md": {
"original_hash": "58860ce9a4b8a564003d2752f7c72851",
"translation_date": "2025-10-03T16:47:34+00:00",
"source_file": "1-Introduction/02-ethics/README.md",
"language_code": "ms"
},
"1-Introduction/02-ethics/assignment.md": {
"original_hash": "b588c0fc73014f52520c666efc3e0cc3",
"translation_date": "2025-08-28T19:05:59+00:00",
"source_file": "1-Introduction/02-ethics/assignment.md",
"language_code": "ms"
},
"1-Introduction/03-defining-data/README.md": {
"original_hash": "12339119c0165da569a93ddba05f9339",
"translation_date": "2025-09-06T00:14:22+00:00",
"source_file": "1-Introduction/03-defining-data/README.md",
"language_code": "ms"
},
"1-Introduction/03-defining-data/assignment.md": {
"original_hash": "2e5cacb967c1e9dfd07809bfc441a0b4",
"translation_date": "2025-08-28T19:00:46+00:00",
"source_file": "1-Introduction/03-defining-data/assignment.md",
"language_code": "ms"
},
"1-Introduction/04-stats-and-probability/README.md": {
"original_hash": "ce95884566a74db72572cd51f0cb25ad",
"translation_date": "2025-09-06T13:54:28+00:00",
"source_file": "1-Introduction/04-stats-and-probability/README.md",
"language_code": "ms"
},
"1-Introduction/04-stats-and-probability/assignment.md": {
"original_hash": "01d1b493e8b51a6ebb42524f6b1bcfff",
"translation_date": "2025-08-28T18:54:16+00:00",
"source_file": "1-Introduction/04-stats-and-probability/assignment.md",
"language_code": "ms"
},
"1-Introduction/README.md": {
"original_hash": "696a8474a01054281704cbfb09148949",
"translation_date": "2025-08-28T18:49:53+00:00",
"source_file": "1-Introduction/README.md",
"language_code": "ms"
},
"2-Working-With-Data/05-relational-databases/README.md": {
"original_hash": "11739c7b40e7c6b16ad29e3df4e65862",
"translation_date": "2025-12-19T11:52:28+00:00",
"source_file": "2-Working-With-Data/05-relational-databases/README.md",
"language_code": "ms"
},
"2-Working-With-Data/05-relational-databases/assignment.md": {
"original_hash": "25b37acdfb2452917c1aa2e2ca44317a",
"translation_date": "2025-10-24T09:57:08+00:00",
"source_file": "2-Working-With-Data/05-relational-databases/assignment.md",
"language_code": "ms"
},
"2-Working-With-Data/06-non-relational/README.md": {
"original_hash": "c182e87f9f80be7e7cdffc7b40bbfccf",
"translation_date": "2025-09-06T00:04:33+00:00",
"source_file": "2-Working-With-Data/06-non-relational/README.md",
"language_code": "ms"
},
"2-Working-With-Data/06-non-relational/assignment.md": {
"original_hash": "f824bfdb8b12d33293913f76f5c787c5",
"translation_date": "2025-08-28T18:07:36+00:00",
"source_file": "2-Working-With-Data/06-non-relational/assignment.md",
"language_code": "ms"
},
"2-Working-With-Data/07-python/README.md": {
"original_hash": "7bfec050f4717dcc2dfd028aca9d21f3",
"translation_date": "2025-09-06T15:52:57+00:00",
"source_file": "2-Working-With-Data/07-python/README.md",
"language_code": "ms"
},
"2-Working-With-Data/07-python/assignment.md": {
"original_hash": "dc8f035ce92e4eaa078ab19caa68267a",
"translation_date": "2025-08-28T18:12:01+00:00",
"source_file": "2-Working-With-Data/07-python/assignment.md",
"language_code": "ms"
},
"2-Working-With-Data/08-data-preparation/README.md": {
"original_hash": "1b560955ff39a2bcf2a049fce474a951",
"translation_date": "2025-09-06T00:06:38+00:00",
"source_file": "2-Working-With-Data/08-data-preparation/README.md",
"language_code": "ms"
},
"2-Working-With-Data/08-data-preparation/assignment.md": {
"original_hash": "f9d5a7275e046223fa6474477674b810",
"translation_date": "2025-08-28T18:18:24+00:00",
"source_file": "2-Working-With-Data/08-data-preparation/assignment.md",
"language_code": "ms"
},
"2-Working-With-Data/README.md": {
"original_hash": "abc3309ab41bc5a7846f70ee1a055838",
"translation_date": "2025-08-28T18:05:22+00:00",
"source_file": "2-Working-With-Data/README.md",
"language_code": "ms"
},
"3-Data-Visualization/09-visualization-quantities/README.md": {
"original_hash": "a49d78e32e280c410f04e5f2a2068e77",
"translation_date": "2025-09-06T00:09:58+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/README.md",
"language_code": "ms"
},
"3-Data-Visualization/09-visualization-quantities/assignment.md": {
"original_hash": "ad163c4fda72c8278280b61cad317ff4",
"translation_date": "2025-08-28T18:42:54+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/assignment.md",
"language_code": "ms"
},
"3-Data-Visualization/10-visualization-distributions/README.md": {
"original_hash": "80a20467e046d312809d008395051fc7",
"translation_date": "2025-09-06T00:11:18+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/README.md",
"language_code": "ms"
},
"3-Data-Visualization/10-visualization-distributions/assignment.md": {
"original_hash": "40eeb9b9f94009c537c7811f9f27f037",
"translation_date": "2025-08-28T18:49:29+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/assignment.md",
"language_code": "ms"
},
"3-Data-Visualization/11-visualization-proportions/README.md": {
"original_hash": "42119bcc97bee88254e381156d770f3c",
"translation_date": "2025-09-06T00:09:29+00:00",
"source_file": "3-Data-Visualization/11-visualization-proportions/README.md",
"language_code": "ms"
},
"3-Data-Visualization/11-visualization-proportions/assignment.md": {
"original_hash": "1e00fe6a244c2f8f9a794c862661dd4f",
"translation_date": "2025-08-28T18:40:57+00:00",
"source_file": "3-Data-Visualization/11-visualization-proportions/assignment.md",
"language_code": "ms"
},
"3-Data-Visualization/12-visualization-relationships/README.md": {
"original_hash": "0764fd4077f3f04a1d968ec371227744",
"translation_date": "2025-09-06T11:43:27+00:00",
"source_file": "3-Data-Visualization/12-visualization-relationships/README.md",
"language_code": "ms"
},
"3-Data-Visualization/12-visualization-relationships/assignment.md": {
"original_hash": "680419753c086eef51be86607c623945",
"translation_date": "2025-08-28T18:47:38+00:00",
"source_file": "3-Data-Visualization/12-visualization-relationships/assignment.md",
"language_code": "ms"
},
"3-Data-Visualization/13-meaningful-visualizations/README.md": {
"original_hash": "cfb068050337a36e348debaa502a24fa",
"translation_date": "2025-09-06T00:10:20+00:00",
"source_file": "3-Data-Visualization/13-meaningful-visualizations/README.md",
"language_code": "ms"
},
"3-Data-Visualization/13-meaningful-visualizations/assignment.md": {
"original_hash": "e56df4c0f49357e30ac8fc77aa439dd4",
"translation_date": "2025-08-28T18:45:03+00:00",
"source_file": "3-Data-Visualization/13-meaningful-visualizations/assignment.md",
"language_code": "ms"
},
"3-Data-Visualization/13-meaningful-visualizations/solution/README.md": {
"original_hash": "5c51a54dd89075a7a362890117b7ed9e",
"translation_date": "2025-08-28T18:45:22+00:00",
"source_file": "3-Data-Visualization/13-meaningful-visualizations/solution/README.md",
"language_code": "ms"
},
"3-Data-Visualization/13-meaningful-visualizations/starter/README.md": {
"original_hash": "5c51a54dd89075a7a362890117b7ed9e",
"translation_date": "2025-08-28T18:45:40+00:00",
"source_file": "3-Data-Visualization/13-meaningful-visualizations/starter/README.md",
"language_code": "ms"
},
"3-Data-Visualization/R/09-visualization-quantities/README.md": {
"original_hash": "22acf28f518a4769ea14fa42f4734b9f",
"translation_date": "2025-08-28T18:31:55+00:00",
"source_file": "3-Data-Visualization/R/09-visualization-quantities/README.md",
"language_code": "ms"
},
"3-Data-Visualization/R/09-visualization-quantities/assignment.md": {
"original_hash": "0ea21b6513df5ade7419c6b7d65f10b1",
"translation_date": "2025-08-28T18:32:58+00:00",
"source_file": "3-Data-Visualization/R/09-visualization-quantities/assignment.md",
"language_code": "ms"
},
"3-Data-Visualization/R/10-visualization-distributions/README.md": {
"original_hash": "ea67c0c40808fd723594de6896c37ccf",
"translation_date": "2025-08-28T18:36:11+00:00",
"source_file": "3-Data-Visualization/R/10-visualization-distributions/README.md",
"language_code": "ms"
},
"3-Data-Visualization/R/10-visualization-distributions/assignment.md": {
"original_hash": "a233d542512136c4dd29aad38ca0175f",
"translation_date": "2025-08-28T18:36:55+00:00",
"source_file": "3-Data-Visualization/R/10-visualization-distributions/assignment.md",
"language_code": "ms"
},
"3-Data-Visualization/R/11-visualization-proportions/README.md": {
"original_hash": "47028abaaafa2bcb1079702d20569066",
"translation_date": "2025-08-28T18:30:10+00:00",
"source_file": "3-Data-Visualization/R/11-visualization-proportions/README.md",
"language_code": "ms"
},
"3-Data-Visualization/R/12-visualization-relationships/README.md": {
"original_hash": "a33c5d4b4156a2b41788d8720b6f724c",
"translation_date": "2025-08-28T18:34:15+00:00",
"source_file": "3-Data-Visualization/R/12-visualization-relationships/README.md",
"language_code": "ms"
},
"3-Data-Visualization/R/13-meaningful-vizualizations/README.md": {
"original_hash": "b4039f1c76548d144a0aee0bf28304ec",
"translation_date": "2025-08-28T18:38:17+00:00",
"source_file": "3-Data-Visualization/R/13-meaningful-vizualizations/README.md",
"language_code": "ms"
},
"3-Data-Visualization/README.md": {
"original_hash": "1441550a0d789796b2821e04f7f4cc94",
"translation_date": "2025-08-28T18:28:59+00:00",
"source_file": "3-Data-Visualization/README.md",
"language_code": "ms"
},
"4-Data-Science-Lifecycle/14-Introduction/README.md": {
"original_hash": "07e12a25d20b8f191e3cb651c27fdb2b",
"translation_date": "2025-09-06T21:22:46+00:00",
"source_file": "4-Data-Science-Lifecycle/14-Introduction/README.md",
"language_code": "ms"
},
"4-Data-Science-Lifecycle/14-Introduction/assignment.md": {
"original_hash": "564445c39ad29a491abcb9356fc4d47d",
"translation_date": "2025-08-28T18:24:18+00:00",
"source_file": "4-Data-Science-Lifecycle/14-Introduction/assignment.md",
"language_code": "ms"
},
"4-Data-Science-Lifecycle/15-analyzing/README.md": {
"original_hash": "661dad02c3ac239644d34c1eb51e76f8",
"translation_date": "2025-09-06T21:22:03+00:00",
"source_file": "4-Data-Science-Lifecycle/15-analyzing/README.md",
"language_code": "ms"
},
"4-Data-Science-Lifecycle/15-analyzing/assignment.md": {
"original_hash": "fcc7547171f4530f159676dd73ed772e",
"translation_date": "2025-08-28T18:20:41+00:00",
"source_file": "4-Data-Science-Lifecycle/15-analyzing/assignment.md",
"language_code": "ms"
},
"4-Data-Science-Lifecycle/16-communication/README.md": {
"original_hash": "215a3254ba5a222a57c5bb0192cea8e3",
"translation_date": "2025-09-06T21:23:12+00:00",
"source_file": "4-Data-Science-Lifecycle/16-communication/README.md",
"language_code": "ms"
},
"4-Data-Science-Lifecycle/16-communication/assignment.md": {
"original_hash": "8980d7efd101c82d6d6ffc3458214120",
"translation_date": "2025-08-28T18:28:20+00:00",
"source_file": "4-Data-Science-Lifecycle/16-communication/assignment.md",
"language_code": "ms"
},
"4-Data-Science-Lifecycle/README.md": {
"original_hash": "dd173fd30fc039a7a299898920680723",
"translation_date": "2025-08-28T18:19:17+00:00",
"source_file": "4-Data-Science-Lifecycle/README.md",
"language_code": "ms"
},
"5-Data-Science-In-Cloud/17-Introduction/README.md": {
"original_hash": "5f8e7cdefa096664ae86f795be571580",
"translation_date": "2025-09-06T00:03:23+00:00",
"source_file": "5-Data-Science-In-Cloud/17-Introduction/README.md",
"language_code": "ms"
},
"5-Data-Science-In-Cloud/17-Introduction/assignment.md": {
"original_hash": "96f3696153d9ed54b19a1bb65438c104",
"translation_date": "2025-08-28T18:01:04+00:00",
"source_file": "5-Data-Science-In-Cloud/17-Introduction/assignment.md",
"language_code": "ms"
},
"5-Data-Science-In-Cloud/18-Low-Code/README.md": {
"original_hash": "bd4da10766c64fce4294a98f6479dfb0",
"translation_date": "2025-09-06T00:01:53+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/README.md",
"language_code": "ms"
},
"5-Data-Science-In-Cloud/18-Low-Code/assignment.md": {
"original_hash": "8fdc4a5fd9bc27a8d2ebef995dfbf73f",
"translation_date": "2025-08-28T17:58:58+00:00",
"source_file": "5-Data-Science-In-Cloud/18-Low-Code/assignment.md",
"language_code": "ms"
},
"5-Data-Science-In-Cloud/19-Azure/README.md": {
"original_hash": "472d3fab1c5be50f387336e7a686dbe1",
"translation_date": "2025-09-06T00:03:47+00:00",
"source_file": "5-Data-Science-In-Cloud/19-Azure/README.md",
"language_code": "ms"
},
"5-Data-Science-In-Cloud/19-Azure/assignment.md": {
"original_hash": "386efdbc19786951341f6956247ee990",
"translation_date": "2025-08-28T18:04:53+00:00",
"source_file": "5-Data-Science-In-Cloud/19-Azure/assignment.md",
"language_code": "ms"
},
"5-Data-Science-In-Cloud/README.md": {
"original_hash": "8dfe141a0f46f7d253e07f74913c7f44",
"translation_date": "2025-08-28T17:54:10+00:00",
"source_file": "5-Data-Science-In-Cloud/README.md",
"language_code": "ms"
},
"6-Data-Science-In-Wild/20-Real-World-Examples/README.md": {
"original_hash": "0f67a4139454816631526779a456b734",
"translation_date": "2025-09-06T18:38:19+00:00",
"source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/README.md",
"language_code": "ms"
},
"6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md": {
"original_hash": "d1e05715f9d97de6c4f1fb0c5a4702c0",
"translation_date": "2025-08-28T19:10:14+00:00",
"source_file": "6-Data-Science-In-Wild/20-Real-World-Examples/assignment.md",
"language_code": "ms"
},
"6-Data-Science-In-Wild/README.md": {
"original_hash": "07faf02ff163e609edf0b0308dc5d4e6",
"translation_date": "2025-08-28T19:07:10+00:00",
"source_file": "6-Data-Science-In-Wild/README.md",
"language_code": "ms"
},
"AGENTS.md": {
"original_hash": "cc2e18ab65df63e75d3619c4752e9b22",
"translation_date": "2025-10-03T11:31:51+00:00",
"source_file": "AGENTS.md",
"language_code": "ms"
},
"CODE_OF_CONDUCT.md": {
"original_hash": "c06b12caf3c901eb3156e3dd5b0aea56",
"translation_date": "2025-08-28T17:53:45+00:00",
"source_file": "CODE_OF_CONDUCT.md",
"language_code": "ms"
},
"CONTRIBUTING.md": {
"original_hash": "10f86fb29b5407088445ac803b3d0ed1",
"translation_date": "2025-10-03T14:22:06+00:00",
"source_file": "CONTRIBUTING.md",
"language_code": "ms"
},
"INSTALLATION.md": {
"original_hash": "a64d8afa22ffcc2016bb239188d6acb1",
"translation_date": "2025-10-03T15:23:26+00:00",
"source_file": "INSTALLATION.md",
"language_code": "ms"
},
"README.md": {
"original_hash": "8ec92ecfeb14923af733851239552146",
"translation_date": "2026-01-30T02:10:21+00:00",
"source_file": "README.md",
"language_code": "ms"
},
"SECURITY.md": {
"original_hash": "0d575483100c332b2dbaefef915bb3c4",
"translation_date": "2025-08-28T17:52:36+00:00",
"source_file": "SECURITY.md",
"language_code": "ms"
},
"SUPPORT.md": {
"original_hash": "872be8bc1b93ef1dd9ac3d6e8f99f6ab",
"translation_date": "2025-08-28T17:51:33+00:00",
"source_file": "SUPPORT.md",
"language_code": "ms"
},
"TROUBLESHOOTING.md": {
"original_hash": "93a6a8a8a209128cbfedcbc076ee21b0",
"translation_date": "2025-10-03T15:44:12+00:00",
"source_file": "TROUBLESHOOTING.md",
"language_code": "ms"
},
"USAGE.md": {
"original_hash": "f546349678757508d69ce9e1d2688446",
"translation_date": "2025-10-03T15:07:04+00:00",
"source_file": "USAGE.md",
"language_code": "ms"
},
"docs/_sidebar.md": {
"original_hash": "3767555b3cc28a2865c79202f4374204",
"translation_date": "2025-08-28T18:18:52+00:00",
"source_file": "docs/_sidebar.md",
"language_code": "ms"
},
"examples/README.md": {
"original_hash": "9bef7fd96c8f262339933117d9b3e342",
"translation_date": "2025-10-03T13:05:23+00:00",
"source_file": "examples/README.md",
"language_code": "ms"
},
"for-teachers.md": {
"original_hash": "f7440be10c17a8a9262713af3d2818a9",
"translation_date": "2025-09-06T19:59:31+00:00",
"source_file": "for-teachers.md",
"language_code": "ms"
},
"quiz-app/README.md": {
"original_hash": "e92c33ea498915a13c9aec162616db18",
"translation_date": "2025-08-28T19:06:45+00:00",
"source_file": "quiz-app/README.md",
"language_code": "ms"
},
"sketchnotes/README.md": {
"original_hash": "3a848466cb63aff1a93411affb152c2a",
"translation_date": "2025-08-28T19:10:41+00:00",
"source_file": "sketchnotes/README.md",
"language_code": "ms"
}
}

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "43212cc1ac137b7bb1dcfb37ca06b0f4",
"translation_date": "2025-10-25T19:01:16+00:00",
"source_file": "1-Introduction/01-defining-data-science/README.md",
"language_code": "ms"
}
-->
# Mendefinisikan Sains Data
| ![ Sketchnote oleh [(@sketchthedocs)](https://sketchthedocs.dev) ](../../sketchnotes/01-Definitions.png) |

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "4e0f1773b9bee1be3b28f9fe2c71b3de",
"translation_date": "2025-08-28T18:57:50+00:00",
"source_file": "1-Introduction/01-defining-data-science/assignment.md",
"language_code": "ms"
}
-->
# Tugasan: Senario Sains Data
Dalam tugasan pertama ini, kami meminta anda untuk memikirkan tentang beberapa proses atau masalah kehidupan sebenar dalam pelbagai domain masalah, dan bagaimana anda boleh memperbaikinya menggunakan proses Sains Data. Fikirkan perkara berikut:

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "a8f79b9c0484c35b4f26e8aec7fc4d56",
"translation_date": "2025-08-28T18:58:26+00:00",
"source_file": "1-Introduction/01-defining-data-science/solution/assignment.md",
"language_code": "ms"
}
-->
# Tugasan: Senario Sains Data
Dalam tugasan pertama ini, kami meminta anda untuk memikirkan tentang beberapa proses atau masalah kehidupan sebenar dalam pelbagai domain masalah, dan bagaimana anda boleh memperbaikinya menggunakan proses Sains Data. Fikirkan perkara berikut:

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "58860ce9a4b8a564003d2752f7c72851",
"translation_date": "2025-10-03T16:47:34+00:00",
"source_file": "1-Introduction/02-ethics/README.md",
"language_code": "ms"
}
-->
# Pengenalan kepada Etika Data
|![ Sketchnote oleh [(@sketchthedocs)](https://sketchthedocs.dev) ](../../sketchnotes/02-Ethics.png)|

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "b588c0fc73014f52520c666efc3e0cc3",
"translation_date": "2025-08-28T19:05:59+00:00",
"source_file": "1-Introduction/02-ethics/assignment.md",
"language_code": "ms"
}
-->
## Tulis Kajian Kes Etika Data
## Arahan

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "12339119c0165da569a93ddba05f9339",
"translation_date": "2025-09-06T00:14:22+00:00",
"source_file": "1-Introduction/03-defining-data/README.md",
"language_code": "ms"
}
-->
# Mendefinisikan Data
|![ Sketchnote oleh [(@sketchthedocs)](https://sketchthedocs.dev) ](../../sketchnotes/03-DefiningData.png)|

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "2e5cacb967c1e9dfd07809bfc441a0b4",
"translation_date": "2025-08-28T19:00:46+00:00",
"source_file": "1-Introduction/03-defining-data/assignment.md",
"language_code": "ms"
}
-->
# Mengklasifikasikan Set Data
## Arahan

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "ce95884566a74db72572cd51f0cb25ad",
"translation_date": "2025-09-06T13:54:28+00:00",
"source_file": "1-Introduction/04-stats-and-probability/README.md",
"language_code": "ms"
}
-->
# Pengenalan Ringkas kepada Statistik dan Kebarangkalian
|![ Sketchnote oleh [(@sketchthedocs)](https://sketchthedocs.dev) ](../../sketchnotes/04-Statistics-Probability.png)|
@ -64,7 +55,7 @@ Untuk membantu kita memahami taburan data, adalah berguna untuk bercakap tentang
Secara grafik, kita boleh mewakili hubungan antara median dan kuartil dalam diagram yang dipanggil **plot kotak**:
<img src="images/boxplot_explanation.png" alt="Penjelasan Plot Kotak" width="50%">
<img src="../../../../translated_images/ms/boxplot_explanation.4039b7de08780fd4.webp" alt="Penjelasan Plot Kotak" width="50%">
Di sini kita juga mengira **jarak antara kuartil** IQR=Q3-Q1, dan apa yang dipanggil **outlier** - nilai yang berada di luar sempadan [Q1-1.5*IQR,Q3+1.5*IQR].

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "01d1b493e8b51a6ebb42524f6b1bcfff",
"translation_date": "2025-08-28T18:54:16+00:00",
"source_file": "1-Introduction/04-stats-and-probability/assignment.md",
"language_code": "ms"
}
-->
# Kajian Kecil Diabetes
Dalam tugasan ini, kita akan bekerja dengan dataset kecil pesakit diabetes yang diambil dari [sini](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html).

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "696a8474a01054281704cbfb09148949",
"translation_date": "2025-08-28T18:49:53+00:00",
"source_file": "1-Introduction/README.md",
"language_code": "ms"
}
-->
# Pengenalan kepada Sains Data
![data in action](../../../translated_images/ms/data.48e22bb7617d8d92188afbc4c48effb920ba79f5cebdc0652cd9f34bbbd90c18.jpg)

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "11739c7b40e7c6b16ad29e3df4e65862",
"translation_date": "2025-12-19T11:52:28+00:00",
"source_file": "2-Working-With-Data/05-relational-databases/README.md",
"language_code": "ms"
}
-->
# Bekerja dengan Data: Pangkalan Data Relasi
|![ Sketchnote oleh [(@sketchthedocs)](https://sketchthedocs.dev) ](../../sketchnotes/05-RelationalData.png)|

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "25b37acdfb2452917c1aa2e2ca44317a",
"translation_date": "2025-10-24T09:57:08+00:00",
"source_file": "2-Working-With-Data/05-relational-databases/assignment.md",
"language_code": "ms"
}
-->
# Memaparkan data lapangan terbang
Anda telah diberikan [pangkalan data](https://raw.githubusercontent.com/Microsoft/Data-Science-For-Beginners/main/2-Working-With-Data/05-relational-databases/airports.db) yang dibina menggunakan [SQLite](https://sqlite.org/index.html) yang mengandungi maklumat tentang lapangan terbang. Skema ditunjukkan di bawah. Anda akan menggunakan [SQLite extension](https://marketplace.visualstudio.com/items?itemName=alexcvzz.vscode-sqlite&WT.mc_id=academic-77958-bethanycheum) dalam [Visual Studio Code](https://code.visualstudio.com?WT.mc_id=academic-77958-bethanycheum) untuk memaparkan maklumat tentang lapangan terbang di pelbagai bandar.

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "c182e87f9f80be7e7cdffc7b40bbfccf",
"translation_date": "2025-09-06T00:04:33+00:00",
"source_file": "2-Working-With-Data/06-non-relational/README.md",
"language_code": "ms"
}
-->
# Bekerja dengan Data: Data Tidak Relasional
|![ Sketchnote oleh [(@sketchthedocs)](https://sketchthedocs.dev) ](../../sketchnotes/06-NoSQL.png)|

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "f824bfdb8b12d33293913f76f5c787c5",
"translation_date": "2025-08-28T18:07:36+00:00",
"source_file": "2-Working-With-Data/06-non-relational/assignment.md",
"language_code": "ms"
}
-->
# Keuntungan Soda
## Arahan

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "7bfec050f4717dcc2dfd028aca9d21f3",
"translation_date": "2025-09-06T15:52:57+00:00",
"source_file": "2-Working-With-Data/07-python/README.md",
"language_code": "ms"
}
-->
# Bekerja dengan Data: Python dan Perpustakaan Pandas
| ![ Sketchnote oleh [(@sketchthedocs)](https://sketchthedocs.dev) ](../../sketchnotes/07-WorkWithPython.png) |

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "dc8f035ce92e4eaa078ab19caa68267a",
"translation_date": "2025-08-28T18:12:01+00:00",
"source_file": "2-Working-With-Data/07-python/assignment.md",
"language_code": "ms"
}
-->
# Tugasan untuk Pemprosesan Data dalam Python
Dalam tugasan ini, kami akan meminta anda untuk menghuraikan kod yang telah kami mula bangunkan dalam cabaran kami. Tugasan ini terdiri daripada dua bahagian:

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "1b560955ff39a2bcf2a049fce474a951",
"translation_date": "2025-09-06T00:06:38+00:00",
"source_file": "2-Working-With-Data/08-data-preparation/README.md",
"language_code": "ms"
}
-->
# Bekerja dengan Data: Penyediaan Data
|![ Sketchnote oleh [(@sketchthedocs)](https://sketchthedocs.dev) ](../../sketchnotes/08-DataPreparation.png)|

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "f9d5a7275e046223fa6474477674b810",
"translation_date": "2025-08-28T18:18:24+00:00",
"source_file": "2-Working-With-Data/08-data-preparation/assignment.md",
"language_code": "ms"
}
-->
# Menilai Data daripada Borang
Seorang pelanggan telah menguji [borang kecil](../../../../2-Working-With-Data/08-data-preparation/index.html) untuk mengumpulkan beberapa data asas tentang pangkalan pelanggan mereka. Mereka telah membawa penemuan mereka kepada anda untuk mengesahkan data yang telah mereka kumpulkan. Anda boleh membuka halaman `index.html` dalam pelayar untuk melihat borang tersebut.

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "abc3309ab41bc5a7846f70ee1a055838",
"translation_date": "2025-08-28T18:05:22+00:00",
"source_file": "2-Working-With-Data/README.md",
"language_code": "ms"
}
-->
# Bekerja dengan Data
![data love](../../../translated_images/ms/data-love.a22ef29e6742c852505ada062920956d3d7604870b281a8ca7c7ac6f37381d5a.jpg)

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "a49d78e32e280c410f04e5f2a2068e77",
"translation_date": "2025-09-06T00:09:58+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/README.md",
"language_code": "ms"
}
-->
# Memvisualkan Kuantiti
|![ Sketchnote oleh [(@sketchthedocs)](https://sketchthedocs.dev) ](../../sketchnotes/09-Visualizing-Quantities.png)|

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "ad163c4fda72c8278280b61cad317ff4",
"translation_date": "2025-08-28T18:42:54+00:00",
"source_file": "3-Data-Visualization/09-visualization-quantities/assignment.md",
"language_code": "ms"
}
-->
# Garisan, Taburan dan Bar
## Arahan

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "80a20467e046d312809d008395051fc7",
"translation_date": "2025-09-06T00:11:18+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/README.md",
"language_code": "ms"
}
-->
# Memvisualkan Taburan
|![ Sketchnote oleh [(@sketchthedocs)](https://sketchthedocs.dev) ](../../sketchnotes/10-Visualizing-Distributions.png)|

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "40eeb9b9f94009c537c7811f9f27f037",
"translation_date": "2025-08-28T18:49:29+00:00",
"source_file": "3-Data-Visualization/10-visualization-distributions/assignment.md",
"language_code": "ms"
}
-->
# Gunakan Kemahiran Anda
## Arahan

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "42119bcc97bee88254e381156d770f3c",
"translation_date": "2025-09-06T00:09:29+00:00",
"source_file": "3-Data-Visualization/11-visualization-proportions/README.md",
"language_code": "ms"
}
-->
# Memvisualkan Perkadaran
|![ Sketchnote oleh [(@sketchthedocs)](https://sketchthedocs.dev) ](../../sketchnotes/11-Visualizing-Proportions.png)|

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "1e00fe6a244c2f8f9a794c862661dd4f",
"translation_date": "2025-08-28T18:40:57+00:00",
"source_file": "3-Data-Visualization/11-visualization-proportions/assignment.md",
"language_code": "ms"
}
-->
# Cuba di Excel
## Arahan

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "0764fd4077f3f04a1d968ec371227744",
"translation_date": "2025-09-06T11:43:27+00:00",
"source_file": "3-Data-Visualization/12-visualization-relationships/README.md",
"language_code": "ms"
}
-->
# Visualisasi Hubungan: Semua Tentang Madu 🍯
|![ Sketchnote oleh [(@sketchthedocs)](https://sketchthedocs.dev) ](../../sketchnotes/12-Visualizing-Relationships.png)|

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "680419753c086eef51be86607c623945",
"translation_date": "2025-08-28T18:47:38+00:00",
"source_file": "3-Data-Visualization/12-visualization-relationships/assignment.md",
"language_code": "ms"
}
-->
# Menyelami Sarang Lebah
## Arahan

@ -1,12 +1,3 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "cfb068050337a36e348debaa502a24fa",
"translation_date": "2025-09-06T00:10:20+00:00",
"source_file": "3-Data-Visualization/13-meaningful-visualizations/README.md",
"language_code": "ms"
}
-->
# Membuat Visualisasi yang Bermakna
|![ Sketchnote oleh [(@sketchthedocs)](https://sketchthedocs.dev) ](../../sketchnotes/13-MeaningfulViz.png)|

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save